Publication:
Parametric invariance and the Pioneer anomaly

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-10
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Canadian Science Publishing, NRC Research Press
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
It is usually assumed that the t parameter in the equations of dynamics can be identified with the indication of the pointer of a clock. Things are not so simple, however. In fact, because the equations of motion can be written in terms of t but also in terms of t' = f(t), f being any well-behaved function, any one of those infinite parametric times t' is as good as the newtonian one to study classical dynamics in hamiltonian form. Here we show that, as a consequence of parametric invariance, one of the foundations of classical dynamics, the relation between the mathematical parametric time t in the equations of dynamics and the physical dynamical time sigma that is measured with a particular clock (which is itself a dynamical system) requires the characterization of the clock that is used to achieve a complete treatment of dynamical systems. These two kinds of time, therefore, must be carefully distinguished. Furthermore, we show that not all the dynamical clock-times are necessarily equivalent and that the observational fingerprint of this nonequivalence has, curiously, the same form as that of the Pioneer anomaly. This suggests, therefore, that an acceleration to one another of the astronomical and the atomic times, t(astr) and t(atom), can contribute to the total amount of the anomaly.
Description
© Canadian Journal of Physics.
Unesco subjects
Keywords
Citation
1. A.T. Hanson, T. Regge, and C. Teitelboim, Constrained hamiltonian systems, Academia dei Lincei, Roma, 1976. 2. A.F. Rañada and A. Tiemblo, Found. Phys., 38, 458 (2008), doi:10.1007/s10701-008-9214-4. 3. A. Prati., J. Phys.: Conf. Ser., 306, 0112013 (2011). 4. R. Arnowitt, S. Deser, and C.W. Misner., Phys. Rev., 116, 1322, (1959), doi:10.1103/PhysRev.116.1322. 5. V. Perlick., Gen. Relativ. Gravit., 19, 1059 (1987), doi:10.1007/BF00759142. 6. V. Husain and K. Kuchař., Phys. Rev. D, 42, 4070 (1990), doi:10.1103/PhysRevD.42.4070. 7. J.F. Barbero G., A. Tiemblo, and R. Tresguerres., Phys. Rev. D, 57, 6104 (1998), doi:10.1103/PhysRevD.57.6104. 8. J.D. Anderson, Ph.A. Laing, E.L. Lau, A.S. Liu, M.M. Nieto, and S.G. Turyshev., Phys. Rev. D, 65, 082004 (2002), doi:10.1103/PhysRevD.65.082004. 9. J.D. Anderson, Ph.A. Laing, E.L. Lau, A.S. Liu, M.M. Nieto, and S.G. Turyshev., Phys. Rev. Lett., 81, 2858 (1998), doi:10.1103/PhysRevLett.81.2858. 10. S.G. Turyshev and V.T. Toth., arXiv:1001.3686v2, 19, 2010, --- S.G. Turyshev and V.T. Toth., Living Rev. Relativ., 13, 4 (2010). 11. J.D. Anderson, E.L. Lau, S.G. Turyshev, P.A. Laing, and M.M. Nieto, Mod. Phys. Lett., A, 17, 875 (2002), doi:10.1142/S0217732302007107. 12. S.G. Turyshev, M.M. Nieto, and J.D. Anderson, Am. J. Phys. 73, 1033 (2005), doi:10 1119/1.2008300. 13. J.D. Anderson, J.K. Campbell, and M.M. Nieto, New Astron., 12, 383 (2007), doi:10.1016/j.newast.2006.11.004. 14. M.M. Nieto and J.D. Anderson, Contemp. Phys., 48, 41 (2007), doi:10.1080/00107510701462061. 15. A.F. Rañada, Found. Phys., 34, 1955 (2004) and references therein, doi:10.1007/s10701-004-1629-y. 16. C.B. Markwardt, arXiv:gr-qc/0208046v1. 2002. 17. A. Levy, B. Christoffe, P. Bério, G. Métris, J.-M. Courty, and S. Reynaud, Adv. Space Res., 43, 1538 (2009), doi:10.1016/j.asr.2009.01.003. 18. Ø. Olsen, Astron. Astrophys, 463, 393 (2007), doi:10.1051/0004-6361:20065906. 19. V.T. Toth, Int. J. Mod. Phys. D, 18, 717 (2009), doi:10.1142/S0218271809014728. 20. S.G. Turyshev, V.T. Toth, L.R. Kellog, E.L. Lau, and K.J. Lee, Int. J. Mod. Phys. D, 15, 1 (2006), doi:10.1142/S0218271806008218. 21. V.T. Toth and S.G. Turyshev, arXiv:0710.25561. 2007. 22. V.T. Toth and S.G. Turyshev, arXiv:0901.4597v2 [physics space-ph], 2009 and references therein. 23. S.G. Turyshev and V.T. Toth, Space Sci. Rev., 148, 149 (2009), doi:10.1007/s11214-009-9543-4. 24. S.G. Turyshev, M.M. Nieto, and J.D. Anderson, In arXiv:gr/qc/0510081v1 17, Oct 2005, edited by G.A. Mamon, F. Combes, C. Deffayet, and B. Fort, EAS Publications Series, Vol. 20. 2006. pp. 243–250. 25. L. Iorio and G. Giudice, Astron. J., 11, 600 (2006). 26. G.L. Page, D.S. Dixon, and J.M. Wallin, Astrophys. J., 642,606 (2006), doi:10.1086/500796. 27. K. Tangen, Phys. Rev. D, 76, 042005 (2007), Phys. Rev. D, 76, doi:10.1103/042005. 28. L. Iorio, Found. Phys., 37, 897 (2007), doi:10.1007/s10701-007-9132-x. 29. J.F. Wallin, D.S. Dixon, and G.L. Page, Astrophys. J., 666, 1296 (2007), doi:10.1086/520528. 30. L. Iorio, Mon. Not. R. Astron. Soc., 405, 2615 (2010). 31. G.L. Page, Publ. Astron. Soc. Pac., 122, 259 (2010), doi:10.1086/651059. 32. L. Iorio, Mod. Phys. Lett. A, 27, 1250071-1 (2012), doi:10.1142/S021773231250071X. 33. M. Mizony and M. Lachièze-Rey, Astron. Astrophys, 434, 45 (2005), doi:10.1051/0004-6361:20042195. 34. C. Lämmerzahl, O. Preuss, and H. Dittus, In Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space, edited by H. Dittus, C. Lämmerzahl, and S.G. Turyshev, 2008, Vol. 349 of Astrophysics and Space Science Library, p. 75, arXiv:gr-qc/060452. 35. G.U. Varieschi, arXiv:astro-ph.CO/1010.3262, 2010. 36. F. Francisco, O. Bertolami, P.J.S. Gil, and J. Paramos., arXiv:1103.5222v1 [physics.space-ph], 2011. 37. B. Rievers and C. Lämmerzahl.,Ann. Phys., (Berlin), 523, 439 (2011), doi:10.1002/andp.201100081. 38. S.G. Turyshev, V.T. Toth, J. Ellis, and C.B. Markward, Phys. Rev. Lett., 107, 081103 (2011), arXiv:gr-qc/1107.2886. 39. S.G. Turyshev, V.T. Toth, G. Kinsella, S.-C. Lee, S.M. Lok, and J. Ellis, arXiv:gr-qc/1204.2507, 2012. 40. J.D. Anderson and M.M. Nieto, Proceedings of the IAU Symp., 261, Relativity in Fundamental Astronomy: Dynamics, Reference Frames and Data Analysis, S.A. Klioner, P.K. Seidelmann, and M.H. Soffel (Editors), Cambridge University Press, Cambridge, 2010, p. 189. 41. L. Iorio, Mon. Not. R. Astron. Soc., 415, 1266 (2011), doi:10.1111/j.1365-2966.2011.18777.x. 42. J.D. Anderson, J.K. Campbell, J.E. Ekelund, J. Ellis, and J.F. Jordan, Phys. Rev. Lett., 100, 091102 (2008), Phys. Rev. Lett., 100, doi:10.1103/091102, PMID:18352689. 43. E.V. Pitjeva, In IAU Symposium, Vol. 261, edited by S.A. Klioner, P.K. Seidelmann, and M.H. Soffel, Cambridge University Press, Cambridge, 2010, p. 170. 44. L. Iorio, The Open Astron. J., 3, 1 (2010), doi:10.2174/1874381101003010001. 45. E.V. Pitjeva and N.P. Pitjev, Sol. Syst. Res., 46, 78 (2012), doi:10.1134/S0038094612010054. 46. G.A. Krasinsky and V.A. Brumberg, Celestial Mech. Dyn. Astron., 90, 267 (2004), doi:10.1007/s10569-004-0633-z. 47. A.F. Rañada and A. Tiemblo, arXiv:0909.0912v1 [gr-qc], 2009.
Collections