Publication:
Experimental estimation of gas-transport properties of linear low-density polyethylene membranes by an integral permeation method

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-12-13
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In recent years, we have investigated gas-transport phenomena in coextruded linear low-density polyethylene (LLDPE) membranes. For the most part, coextruded LLDPE membranes were investigated because of their excellent mechanical properties, which explain their extensive use in the packaging industry. Because of the small thickness of coextruded LLDPE membranes, significant errors can be involved in the determination of the diffusion coefficient of gases in the membranes by the time-lag method. To obtain more precise transport parameters for LLDPE membranes, we determined the permeability and diffusion coefficients for O-2, CO2, He, and N-2 from 298 to 348 K by employing an alternative method recently developed. The results indicate that the procedure used in this study for determining the diffusivity of gases in membranes was precise and more efficient than a method based on the evaluation of the time-lag parameter. With respect to permeability, the coefficients obtained in this work agree satisfactorily with those obtained by the time-lag method. In general, the permeability and diffusivity results are in satisfactory agreement with the literature values reported for semicrystalline polyethylene membranes.
Description
© 2001 John Wiley & Sons, Inc.
UCM subjects
Unesco subjects
Keywords
Citation
1. Barrer, R. M. Diffusion in and through Solids; Cambridge University Press: Cambridge, England, 1951. 2. Meares, P. Membrane Separation Processes; Elsevier: Amsterdam, 1976. 3. Frisch, H. L.; Stern, S. A. CRC Crit Rev Solid State Mater Sci 1983, 11, 123. 4. Stern, S. A.; Sampat, S. R.; Kulkarni, S. S. J Polym Sci Part B: Polym Phys 1986, 24, 2149. 5. Park, G. S. In Synthetic Membranes: Science, Engineering and Applications; Bungay, P. M.; Lonsdale, H. K.; de Pinho, M. N., Eds.; NATO ASI Series; Reidel: Dordrecht, 1983. 6. Zolandz, R. R.; Fleming, G. K. In Membrane Handbook; Ho, W. S. W.; Sirkar, K. K., Eds.; Chapman & Hall: New York, 1992. 7. Balik, C. M. Macromolecules 1996, 29, 3025. 8. Felder, R. M. J Membr Sci 1978, 3, 15. 9. Koros, W. J.; Chan, A. H.; Paul, D. R. J Membr Sci 1977, 2, 165. 10. Frisch, H. L. J Phys Chem 1957, 61, 93. 11. Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon: Oxford, 1975. 12. Paul, D. R.; DiBennedetto, A. T. J Polym Sci Part C: Polym Symp 1965, 10, 17. 13. Jenkins, R. C. L.; Nelson, P. M.; Spier, L. Trans Faraday Soc 1970, 66, 1391. 14. Barrie, J. M.; Spencer, H. G.; Quig, A. Trans Faraday Soc 1975, 71, 2459. 15. Nguyen, X. Q.; Broz, Z.; Uchytil, P.; Nguyen, Q. T. J Chem Soc Faraday Soc 1992, 88, 3553. 16. Nguyen, X. Q.; Broz, Z.; Vasák, F.; Nguyen, Q. T. J Membr Sci 1994, 91, 65. 17. Villaluenga, J. P. G.; Seoane, B. Eur Polym J 2000, 36, 1697. 18. Villaluenga, J. P. G.; Seoane, B. Polymer 1998, 39, 3955. 19. Michaels, A. S.; Bixler, H. J. J Polym Sci 1963, 50, 413. 20. Pauling, L. Nature of the Chemical Bond, 3rd ed.; Cornell University Press: New York, 1960. 21. Compañ, V.; Ribes, A.; Díaz Calleja, R.; Riande, E. Polymer 1995, 36, 323. 22. Compañ, V.; Ribes, A.; Díaz Calleja, R.; Riande, E. Polymer 1996, 37, 2243.
Collections