Publication:
The use of VMD data/model to test different thermodynamic models for vapour-liquid equilibrium

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2004-08-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Vacuum membrane distillation (VMD) has been studied as a separation process to remove volatile organic compounds from aqueous streams. A vapour pressure difference across a microporous hydrophobic membrane is the driving force for the mass transport through the membrane pores (this transport takes place in vapour phase). The vapour pressure difference is obtained in VMD processes by applying a vacuum on one side of the membrane. The membrane acts as a mere support for the liquid-vapour equilibrium. The evaporation of the liquid stream takes place on the feed side of the membrane, and the condensation on the permeate side of the membrane. The paper focus on aroma stripping using VMD; factors influencing flux and separation performance using selected model aroma compounds have been studied. Mainly the following parameters have been examined-aroma compounds: activity coefficient/vapour pressure values; membrane type: PTFE/PP/PVDF; feed flow rate; feed temperature. A comparison is made between different thermodynamic models for calculating the vapour-liquid equilibrium at the membrane/pore interface.
Description
© 2004 Elsevier B.V. Postdoctoral grant from Universidad Complutense of Madrid to M.A. Izquierdo-Gil, Project PB-98-07-88 (CYCYT, Spain) and support from the Danish Directorate for Development are gratefully acknowledged
UCM subjects
Unesco subjects
Keywords
Citation
[1] K.W. Lawson, D.R. Lloyd, Membrane distillation, J. Membr. Sci. 124 (1997) 1. [2] C. Fernández Pineda, M.A. Izquierdo Gil, M.C. García Payo, Gas permeation and direct contact membrane distillation experiments and their analysis using different models, J. Membr. Sci. 198 (2002) 33. [3] M.A. Izquierdo Gil, M.C. García Payo, C. Fernández Pineda, Air gap membrane distillation of sucrose aqueous solutions, J. Membr. Sci. 155 (1999) 291. [4] M. Khayet, P. Godino, J.I. Mengual, Nature of flow on sweeping gas membrane distillation, J. Membr. Sci. 170 (2000) 243. [5] S. Bandini, C. Gostoli, G.C. Sarti, Separation efficiency in vacuum membrane distillation, J. Membr. Sci. 73 (1992) 217. [6] G.C. Sarti, C. Gostoli, S. Bandini, Extraction of organic components from aqueous streams by vacuum membrane distillation, J. Membr. Sci. 80 (1993) 21. [7] S. Bandini, A. Saavedra, G.C. Sarti, Vacuum membrane distillation: experiments and modeling, AIChE J. 43 (1997) 398. [8] F.A. Banat, J. Simadl, Removal of benzene traces from contaminated water by vacuum membrane distillation, Chem. Eng. Sci. 51 (1996) 1257. [9] E.A. Mason, A.P. Malinauskas, Gas Transport in Porous Media: The Dusty-Gas Model, Elsevier, Amsterdam, 1983. [10] S.R. Sherman, D.B. Trampe, D.M. Bush, M. Schiller, A.A. Eckert, A.J. Dallas, J.J. Li, P.W. Carr, Compilation of limiting activity coefficients of nonelectrolytes in water, Ind. Eng. Chem. Res. 35 (1996) 1044. [11] M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, 1991. [12] M.C. Porter, Concentration polarization with membrane ultrafiltration, Ind. Eng. Chem., Prod. Res. Dev. 11 (1972) 234. [13] M.A. Izquierdo Gil, G. Jonsson, Factors affecting flux and ethanol separation performance in vacuum membrane distillation, J. Membr. Sci. 214 (2003) 113. [14] J.M. Prausnitz, Molecular Thermodynamics of Fluid Phase Equilibria, Prentice-Hall, Englewood Cliffs, NJ, 1969. [15] J. Gmehling, U. Onkan, J.R. Rarey Nies, Chemistry Data Series, Vapour–Liquid Equilibrium Data Collection, vol. 1, Part 1b, Dechema, Frankfurt, 1988. [16] F.A. Banat, J. Simandl, Membrane distillation for dilute ethanol separation from aqueous streams, J. Membr. Sci. 163 (1999) 333. [17] H.K. Hansen, P. Rasmussen, Aa. Fredenslund, M. Schiller, J. Gmehling, Vapour–liquid equilibria by UNIFAC group contribution. 5. Revision and extension, Ind. Eng. Chem. Res. 30 (1991) 2352. [18] A.G. Mitchell, L.S.C. Wan, S.G. Bjaastad, The solubility of benzaldehyde in water, J. Pharmacol. 16 (1964) 632. [19] M.A. Trampe, C.A. Eckert, Calorimetric measurement of partial molar excess enthalpies at infinite dilution, J. Chem. Eng. Data 36 (1991) 112. [20] D. Richon, A. Vaillard, Les systèmes eau/ester. I. Etude calorimétrique des systèmes eau/acétate d’alcoyle, Can. J. Chem. 54 (1976) 2584. [21] J.P.E. Grolier, E. Wilhelm, Excess volumes and excess heat capacities of water + ethanol at 298.15 K, Fluid Phase Equilib. 6 (1981) 283. [22] Handbook of Chemistry and Physics, 55th ed., CRC Press, 1974–1975. [23] Sonntag, Van Wylen, Introduction to Thermodynamics Classical and Statistical, Wiley, New York, 1991.
Collections