Publication:
High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides

Research Projects
Organizational Units
Journal Issue
Abstract
We report a stationary Fourier-transform spectrometer chip implemented in silicon microphotonic waveguides. The device comprises an array of 32 Mach-Zehnder interferometers (MZIs) with linearly increasing optical path delays between the MZI arms across the array. The optical delays are achieved by using Si-wire waveguides arranged in tightly coiled spirals with a compact device footprint of 12 mm(2). Spectral retrieval is demonstrated in a single measurement of the stationary spatial interferogram formed at the output waveguides of the array, with a wavelength resolution of 40 pm within a free spectral range of 0.75 nm. The phase and amplitude errors arising from fabrication imperfections are compensated using a transformation matrix spectral retrieval algorithm.
Description
© 2013 Optical Society of America. Financial support from the Spanish Ministry of Economy is acknowledged under grants TEC2008-04105 and TEC2011-23629.
Keywords
Citation
1. P. Cheben, “Wavelength dispersive planar waveguide devices: echelle gratings and arrayed waveguide gratings,” in Optical Waveguides: from Theory to Applied Technologies, M. L. Calvo and V. Laksminarayanan, eds. (CRC, 2007), pp. 173–230. 2. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, Opt. Express 15, 2299 (2007). 3. S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, IEEE Photon. Technol. Lett. 16, 503 (2004). 4. J. Brouckaert, W. Bogaerts, P. Dumon, D. Thourhout, and R. Baets, J. Lightwave Technol. 25, 1269 (2007). 5. T. Mizuno, M. Oguma, T. Kitoh, Y. Inoue, and H. Takahasi, IEEE Photon. Technol. Lett. 18, 1570 (2006). 6. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, Opt. Express 15, 11934 (2007). 7. P. Bock, P. Cheben, J. Schmid, A. V. Velasco, A. Delâge, S. Janz, D.-X. Xu, J. Lapointe, T. J. Hall, and M. L. Calvo, Opt. Express 20, 19882 (2012). 8. A. V. Velasco, P. J. Bock, P. Cheben, M. L. Calvo, J. H. Schmid, J. Lapointe, D.-X. Xu, S. Janz, and A. Delâge, Electron. Lett. 48, 715 (2012). 9. P. Cheben, I. Powell, S. Janz, and D.-X. Xu, Opt. Lett. 30, 1824 (2005). 10. M. Florjańczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, Opt. Express 15, 18176 (2007). 11. J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, and R. R. Conway, Appl. Opt. 41, 1343 (2002). 12. P. Jacquinot, J. Opt. Soc. Am. 44, 761 (1954). 13. K. Okamoto, H. Aoyagi, and K. Takada, Opt. Lett. 35, 2103 (2010). 14. P. Cheben, P. J. Bock, J. H. Schmid, J. Lapointe, S. Janz, D.-X. Xu, A. Densmore, A. Delâge, B. Lamontagne, and T. J. Hall, Opt. Lett. 35, 2526 (2010). 15. K. Takada, H. Aoyagi, and K. Okamoto, Opt. Lett. 36, 1044 (2011). 16. G. H. Golub and C. Reinsch, Numer. Math. 14, 403 (1970). 17. A. S. Filler, J. Opt. Soc. Am. 54, 762 (1964).
Collections