Universidad Complutense de Madrid
E-Prints Complutense

Matrix grain characterisation by electron backscattering diffraction of powder metallurgy aluminum matrix composites reinforced with MoSi_2 intermetallic particles

Impacto

Downloads

Downloads per month over past year

Corrochano, J. and Hidalgo Alcalde, Pedro and Lieblich, M. and Ibañez, J. (2010) Matrix grain characterisation by electron backscattering diffraction of powder metallurgy aluminum matrix composites reinforced with MoSi_2 intermetallic particles. Materials Characterization, 61 (11). pp. 1294-1298. ISSN 1044-5803

[img] PDF
Restringido a Repository staff only hasta 31 December 2020.

1MB

Official URL: http://dx.doi.org/10.1016/j.matchar.2010.08.010


URLURL Type
http://www.sciencedirect.comPublisher


Abstract

The mechanical properties of particle-reinforced aluminum matrix composites (AMCs) are largely dependent on the microstructure of the materials, which in turn is largely dependent on the processing history [1]. Powder metallurgy (PM) is a commonly used processing technique for producing AMCs since it can reduce reinforcement segregation, typical of casting metallurgy processes [2]. When there is a large size difference between reinforcing and aluminum particles, high energy ball milling (BM) is used to manufacture AMCs successfully [3,4]. In the BM process, the aluminum particles are fragmented and re-welded continuously, during which the brittle reinforcing particles are fragmented and become embedded in the softer aluminum matter. EBSD has been used extensively to characterise submicrometer microstructure in monolithic deformed alloys [5,6]. However, to the authors' knowledge, EBSD has scarcely been used to investigate AMCs and there is limited information on the matrix microstructure of milled AMCs after consolidation processes such as extrusion [7–9]. In the present work, electron back-scattered diffraction (EBSD) has been used to characterise matrix grain size and grain orientation in six powder metallurgy AA6061/MoSi2/15p composites and three unreinforced matrices processed with and without ball milling, followed by hot extrusion. The aim is to know the effect of milling on the matrix grain structure of extruded AMCs


Item Type:Article
Additional Information:

© 2010 Elsevier Inc.
The authors gratefully acknowledge the financial support of the Spanish project MAT2006 01251 Thanks are also due to Dr M T Perez Prado for helpful discussion

Uncontrolled Keywords:Recrystallization, Microstructure, Extrusion
Subjects:Sciences > Physics > Materials
ID Code:25362
Deposited On:13 May 2014 13:22
Last Modified:13 May 2014 13:22

Origin of downloads

Repository Staff Only: item control page