Publication:
Wavefield imaging via iterative retrieval based on phase modulation diversity

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-09-12
Authors
Rodrigo Martín-Romo, José Augusto
Alieva, Tatiana Krasheninnikova
Cristóbal Pérez, Gabriel
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
The Optical Society Of America
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present a fast and robust non-interferomentric wavefield retrieval approach suitable for imaging of both amplitude and phase distributions of scalar coherent beams. It is based on the diversity of the intensity measurements obtained under controlled astigmatism and it can be easily implemented in standard imaging systems. Its application for imaging in microscopy is experimentally studied. Relevant examples illustrate the approach capabilities for image super-resolution, numerical refocusing, quantitative imaging and phase mapping.
Description
© 2011 Optical Society of America. The financial support of the Spanish Ministry of Science and Innovation under project TEC2008-04105 and TEC2010-20307 are acknowledged. José A. Rodrigo gratefully thanks a “Juan de la Cierva” grant.
Keywords
Citation
1. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms”, J. Opt. Soc. Am. A 11, 2011–2015 (1994). 2. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy”, Opt. Lett. 30, 468–470 (2005). 3. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy”, Appl. Opt. 45, 836–850 (2006). 4. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy”, Opt. Lett. 31, 178–180 (2006). 5. V. Mico, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples”, Opt. Express 16, 19260–19270 (2008). 6. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures”, Optik 35, 237–246 (1972). 7. J. R. Fienup, “Phase retrieval algorithms: a comparison”, Appl. Opt. 21, 2758–2769 (1982). 8. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution”, J. Opt. Soc. Am. 73, 1434–1441 (1983). 9. M. R. Teague, “Image formation in terms of the transport equation”, J. Opt. Soc. Am. A 2, 2019–2026 (1985). 10. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy”, Opt. Lett. 23, 817–819 (1998). 11. Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm”, Opt. Express 11, 3234–3241 (2003). 12. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography”, Opt. Lett. 22, 1268–1270 (1997). 13. I. Yamaguchi, J. ichi Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy”, Appl. Opt. 40, 6177–6186 (2001). 14. J. N. Cederquist, J. R. Fienup, J. C. Marron, and R. G. Paxman, “Phase retrieval from experimental far-field speckle data”, Opt. Lett. 13, 619–621 (1988). 15. J. Miao, P. Charalambous, J. Kirz, and D. Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens”, Nature 400, 342–344 (1999). 16. F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation”, Phys. Rev. A 75, 043805 (2007). 17. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm”, Phys. Rev. Lett. 93, 023903 (2004). 18. J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination”, Appl. Phys. Lett. 85, 4795–4797 (2004). 19. K. A. Nugent, A. G. Peele, H. N. Chapman, and A. P. Mancuso, “Unique phase recovery for nonperiodic objects”, Phys. Rev. Lett. 91, 203902 (2003). 20. C. A. Henderson, G. J. Williams, A. G. Peele, H. M. Quiney, and K. A. Nugent, “Astigmatic phase retrieval: an experimental demonstration”, Opt. Express 17, 11905–11915 (2009). 21. T. Alieva and J. A. Rodrigo, “Iterative phase retrieval from Wigner distribution projections”, in Signal Recovery and Synthesis , OSA Technical Digest (CD) (Optical Society of America, 2009), p. STuD2. 22. J. A. Rodrigo, H. Duadi, T. Alieva, and Z. Zalevsky, “Multi-stage phase retrieval algorithm based upon the gyrator transform”, Opt. Express 18, 1510–1520 (2010). 23. J. A. Rodrigo, T. Alieva, A. Cámara, O. Martínez-Matos, P. Cheben, and M. L. Calvo, “Characterization of holographically generated beams via phase retrieval based on Wigner distribution projections”, Opt. Express 19, 6064–6077 (2011). 24. L. J. Allen, M. P. Oxley, and D. Paganin, “Computational aberration correction for an arbitrary linear imaging system”, Phys. Rev. Lett. 87, 123902 (2001). 25. W. McBride, N. L. O’Leary, K. A. Nugent, and L. J. Allen, “Astigmatic electron diffraction imaging: a novel mode for structure determination”, Acta Crystallogr., Sect. A: Found. Crystallogr. 61, 321–324 (2005). 26. T. C. Petersen and V. J. Keast, “Astigmatic intensity equation for electron microscopy based phase retrieval”, Ultramicroscopy 107, 635–643 (2007). 27. L. J. Allen, H. M. L. Faulkner, K. A. Nugent, M. P. Oxley, and D. Paganin, “Phase retrieval from images in the presence of first-order vortices”, Phys. Rev. E 63, 037602 (2001). 28. D. Mendlovic, Z. Zalevsky, and N. Konforti, “Computation considerations and fast algorithms for calculating the diffraction integral”, J. Mod. Opt. 44, 407–414 (1997). 29. T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPU-based wave optics library”, J. Opt. A, Pure Appl. Opt. 10, 075308 (2008). 30. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information”, Appl. Opt. 49, 845–857 (2010). 31. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging”, Opt. Express 17, 266–277 (2009). 32. M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path”, Appl. Opt. 41, 7437–7444 (2002). 33. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy”, Opt. Express 18, 13563–13573 (2010). 34. T. J. McIntyre, C. Maurer, S. Fassl, S. Khan, S. Bernet, and M. Ritsch-Marte, “Quantitative SLM-based differential interference contrast imaging”, Opt. Express 18, 14063–14078 (2010). 35. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm”, Phys. Med. Biol. 48, 4165 (2003). 36. I. D. Nikolov and C. D. Ivanov, “Optical plastic refractive measurements in the visible and the near-infrared regions”, Appl. Opt. 39, 2067–2070 (2000).
Collections