Publication:
Identification of multivariable models of fast ferries

Research Projects
Organizational Units
Journal Issue
Abstract
This work presents the formal approach for identifying continuous transfer functions of the vertical dynamics of a high-speed ship as a nonlinear optimization problem with linear constraints. The proposed solution is described with a hybrid optimization method (genetic algorithm + nonlinear optimization algorithm with linear constraints from the Matlab toolbox).
Description
© EUCA. This development was supported by CICYT of Spain under contracts DPI2000-0386-C03-01 and TAP97-0607-C03-02.
Unesco subjects
Keywords
Citation
1. Andres B, Esteban S, Rivera D. Parallel genetic algorithms: an application for model parameter identification in process control. In: Proceedings of EuroPVM/MPI'99, Sabadell (Spain), 1999 2. Aranda J, Cruz 1M, Díaz JM, Ruipérez P, Andrés B, Esteban S, Giron jM. Modelling of a high speed craft by a non­linear least squares method with constraints. In: Blanke M, Pourzajani MMA, Vukic, ZZ (eds). Proceed­ings of the 5th IFAC conference of manoeuvring and control of marine craft 2000. Pergamon Press, 2001, ISBN: 0­08­043659­5. 3. Baitis AE, Appleby TR, Meyers WG. Validation of the standard ship motion program, SMP. Ship motion transfer function prediction, DTRC Report SPD­-0936­-03, 1981 4. Coleman T, Branch MA, Grace A. Matlab optimization toolbox. User's Guide. Version 5. The Mathworks. Inc., 1997 5. Cruz JM, Aranda J, Díaz JM, Ruipérez P. Identification of the vertical plane motion model of a high speed craft by model testing in irregular waves. In: Kijima K, Fossen TI (eds). Control applications in marine systems a proceedings volume from the IFAC conference. Pergamon Press, 2000., pp 257-262, ISBN: 0080430333. 6. Davids L. Handbook of genetic algorithms. Van Nostrand Reinhold, 1991 7. Díaz 1M. Identificacion, modelado y control de un buque de alta velocidad. Tesis doctoral. Dept. Informatica y Automatica. Facultad de Ciencias UNED (Spain), 2002 8. Esteban S, Giron­Sierra JM, Cruz JM, Andres B., Díaz JM, Aranda J. Fast ferry vertical accelerations reduction with active flaps and t-­foil. In: Proceedings of 5th IFAC conference on manoeuvring and control of marine crafts MCMC2000. Aalborg, 2000 9. Fossen TI. Marine control systems: guidance, naviga­tion and control of ships, rigs and underwater vehicles. Marine Cybernetics AS, Trondheim, 2002 10. Goldberg DE. Genetic algorithms in search, optimiza­tion and machine learning. Addison­Wesley, 1989 11. Hoff O, Kvalsvold 1, Zhao R. Global loads on high­speed catamarans. PRADS'92, Newcastle, UK, 1992 12. Holland 1H. Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor, 1975 13. Korvin­Kroukovsky BV. Theory of seakeeping. SNAME, New York, 1961 14.Lewis, EV. Principles of naval architecture second revision. volume III. motions in waves and controll­ability. Published by The Society of Naval Architects and Marine Engineers. 601 Pavonia Avenue, 1ersey City, N1, 1989 15. Lloyd AR1M. Seakeeping: ship behaviour in rough weather. Ellis Horwood, 1998 16. Nestergad A. Motions of surface effects ships. Det norkse Veritas (DnV), 1998 17. Michalewicz Z. Genetic Algorithms + Data Structure­s = Evolution Programs. Third, revised and extended edn. Springer­Verlag, 1999 18. Schoukens 1, Pintelon R. Identification of linear systems. Pergamon Press, 1991 19. Ursell F. Wave generation by wind. In: Batchelor GK, Davies RM (eds). Surveys in Mechanics, Cambridge University Press, England, 1956, pp 216-249
Collections