Publication:
Thermal growth and cathodoluminescence of Bi doped ZnO nanowires and rods

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-11-21
Authors
Alemán, B.
Piqueras de Noriega, Javier
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing LTD
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Bi doped ZnO nanowires and rods have been grown by a catalyst free evaporation-deposition method with precursors containing either ZnO and Bi_2O_3 or ZnS and Bi_2O_3 powders. The use of ZnS as a precursor was found to lead to a higher density of nano- and microstructures at lower temperatures than by using ZnO. Energy dispersive x-ray spectroscopy (EDS) shows that the Bi content in the wires and rods is in the range 0.15-0.35 at%. Bi incorporation was found to induce a red shift of the near band gap luminescence but no quantitative correlation between the shift and the amount of Bi, as measured by EDS, was observed. The I-V curves of single Bi doped wires had linear behaviour at low current and non-linear behaviour for high currents, qualitatively similar to that of undoped wires.
Description
© 2009 IOP Publishing Ltd. This work was supported by MEC (Project MAT2006-01259).
Unesco subjects
Keywords
Citation
[1] Eda K 1978 J. Appl. Phys. 49 2964 [2] Emtage P R 1977 J. Appl. Phys. 48 4372 [3] Matsuoka M 1971 Japan. J. Appl. Phys. 10 736 [4] Xu C, Rho K, Chun J and Kim D E 2006 Nanotechnology 17 60 [5] Xu C, Chun J, Kim D E, Kim J, Chon B and Joo T 2007 Appl. Phys. Lett. 90 083113 [6] Xiu F X, Mandalapu L J, Yang Z, Liu J L, Liu G F and Yamoff J A 2006 Appl. Phys. Lett. 89 052103 [7] Sun X L, Brillson L J, Chiang Y M and Luo J 2002 J. Appl. Phys. 92 5072 [8] Grym J, Fernández P and Piqueras J 2005 Nanotechnology 16 931 [9] Khomenkova L, Fernández P and Piqueras J 2007 Cryst. Growth Des. 7 836 [10] Ortega Y, Fernández P and Piqueras J 2007 Nanotechnology 18 115606 [11] Magdas D A, Cremades A and Piqueras J 2006 Appl. Phys. Lett. 88 113107 [12] Nogales E, Méndez B and Piqueras J 2005 Appl. Phys. Lett. 86 113112 [13] Nogales E, Méndez B and Piqueras J 2007 Appl. Phys. Lett. 91 133108 [14] Hidalgo P, Méndez B and Piqueras J 2005 Nanotechnology 16 2521 [15] Díaz-Guerra C and Piqueras J 2008 Cryst. Growth Des. 8 1031 [16] García J A, Rem´on A and Piqueras J 1987 J. Appl. Phys. 62 3058 [17] Bougrine A, El Hichou A, Addou M, Ebothé J, Kachouane A and Troyon M 2003 Mat. Chem. Phys. 80 438 [18] Studenikin S A, Golego N and Cocivera N 1998 J. Appl. Phys. 84 2287 [19] Liu M, Kitai H H and Mascher P 1992 J. Lumin. 54 35 [20] Sakurai M, Wang Y G, Uemura T and Aono M 2009 Nanotechnology 20 155203 [21] Gao P and Wang Z L 2002 J. Phys. Chem. B 106 12653 [22] Wen J G, Lao J Y, Wang D Z, Kyaw T M, Foo Y L and Ren Z F 2003 Chem. Phys. Lett. 372 717 [23] Jiang C, Zhang W, Zou G, Yu W and Gian Y 2005 J. Phys. Chem. B 109 1361 [24] Xu C, Liu Z, Liu S and Wang G 2003 Scr. Mater. 48 1367 [25] Ghoshal T, Biswas S, Kar S, Dev A, Chakrabarti S and Chaudhuri S 2008 Nanotechnology 19 065606
Collections