Publication:
The ENSO Signal in the Stratosphere

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Although the El Nino-Southern Oscillation (ENSO) is a tropospheric phenomenon, its effects are also observed in the stratosphere. Traditionally, the study of ENSO above the troposphere has been difficult because of the lack of global observations at high altitudes and also because of the presence of other sources of variability whose signals are difficult to disentangle from ENSO effects. Recent work with general circulation models that isolate the ENSO signal have demonstrated its upward propagation into the stratosphere. Here we review the literature in this field and show results from the most recent version of the Whole Atmosphere Community Climate Model to illustrate the propagation and the mechanisms whereby the signal manifests itself in the stratosphere. The ENSO signal propagates upward to about 40 km by means of large-scale Rossby waves. The propagation is strongly influenced by the zonal mean zonal winds. Most of the strong ENSO events tend to peak in the boreal winter and so the ENSO signal is observed mainly at high latitudes during the Northern Hemisphere winter where the winds are westerly and allow Rossby wave propagation. The ENSO signal is also identified at polar latitudes in the Northern Hemisphere winter in the form of warmer temperatures and weaker winds during a strong El Nino event. This signal shows a zonally homogeneous behavior from the intensification of the stratospheric meridional circulation (in which air rises in the tropics and moves toward the winter pole where it descends) forced by anomalous propagation and dissipation of Rossby waves at middle latitudes during strong ENSO events.
Description
© 2008 New York Academy of Sciences. European Meteorology Society Annual Meeting (7. 2007. El Escorial). European Conference on Applications of Meteorology (8. 2007. El Escorial, Spain). This work has been funded by the Spanish Ministry of Education and Science and the Fulbright Commission in Spain. The WACCM3 simulations discussed here were carried out at the Barcelona Supercomputing Center, Barcelona, Spain, and at the National Center for Atmospheric Research (NCAR), Boulder, CO, USA. NCAR is sponsored by the US National Science Foundation.
Keywords
Citation
1. Horel, J.D. & J.M.Wallace. 1981. Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev. 109: 813–829. 2. Wang, H. & R. Fu. 2000. Influences of ENSO SST anomalies and winter stormtracks on the interannual variability of upper-troposphere water vapor over the Northern Hemisphere extratropics. J. Clim. 13. N.1: 59–73. 3. Angell, J.K. 1981. Comparison of variations in atmospheric quantities with sea surface temperature variations in the equatorial eastern Pacific. Mon.Wea. Rev. 109: 230–243. 4. Rasmusson, E.M. & T.H. Carpenter. 1982. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/ El Niño. Mon. Wea. Rev. 110: 354–384. 5. Lau, K.M. & H.T. Wu. 2000. Intrinsic coupled ocean-atmosphere modes of the Asian summer monsoon: a re-assessment of monsoon-ENSO relationships. J. Clim. 14: 2880–2895. 6. Fraedrich, K. 1990. European grosswetter during the warm and cold extremes of the El Niño/Southern Oscillation. Int. J. Climatol. 10: 12–31. 7. Angell, J.K. 2000. Tropospheric temperature variations adjusted for El Niño, 1958–1998. J. Geophys. Res. 105: 11841–11849. 8. Jones, P.D. 1989. The influences of ENSO on global temperatures. Clim. Monit. 17: 80–89. 9. Christy, J.R. & R.T. McNider. 1994. Satellite greenhouse signal. Nature 367: 325. 10. Trenberth, K.E. et al. 2002. Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res. 107: doi:10.1029/2000JD000298. 11. Calvo, N. et al. 2004. Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979–2000. J. Clim. 17: 3934–3946. 12. Kiladis, G.N. & H.F. Diaz. 1989. Global climatic anomalies associated with extremes in the Southern Oscillation. J. Clim. 2: 1069–1090. 13. Trenberth, K.E. & J.M. Caron. 2000. The Southern Oscillation revisited: sea level pressures, surface temperatures and precipitation. J. Clim. 13: 4358–4365. 14. Yulaeva, E. & J.M. Wallace. 1994. The signature of ENSO in global temperature and precipitation fields derived from the Microwave Sounding Unit. J. Clim. 7: 1719–1736. 15. Andrews, D.G. et al. 1987. Middle Atmosphere Dynamics. International Geophysics Series. Volume 40. 489 pp. Academic Press Inc. New York. 16. Wallace, J.M. & D. S. Gutzler. 1981. Teleconnections in the Geopotencial Height Field during the Northern Hemisphere Winter. Mon. Wea. Rev. 109: 784–812. 17. Hoskins, B.J. & D. Karoly. 1981. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38: 1179–1196. 18. Simmons, A.J. et al. 1983. Barotropic Wave Propagation and Instability, and Atmospheric Teleconnection Patterns. J. Atmos. Sci. 40: 1363–1392. 19. Ribera, P. & M. Mann. 2002. Interannual variability in the NCEP reanalysis 1948–1999. Geophys. Res. Lett. 29: doi:10.1029/2001GL013905. 20. van Loon, H. & R.A. Madden. 1981. The Southern Oscillation. Part I: Global Associations with Pressure and Temperature in NorthernWinter. Mon.Wea. Rev. 109: 1150–1162. 21. Ropelewski, C.F. & M.S. Halpert. 1987. Global and regional scale precipitation patterns associated with the el Niño/Southern Oscillation. Mon. Wea. Rev. 115: 1606–1626. 22. Aceituno, P. 1988. On the Functioning of the Southern Oscillation in the South American Sector. Part I: Surface Climate. Mon. Wea. Rev. 116: 505–524. 23. Robertson, A.W. & C.R.Mechoso. 1998. Interannual and Decadal Cycles in River Flows of Southeastern South America. J. Clim. 11: 2570–2581. 24. Venegas, S. A. et al. 2001. Coupled oscillations in Antarctic sea-ice and atmosphere in the South Pacific sector. Geophys. Res. Lett. 28: 3301–3304. 25. Karoly,D.J. 1989. Southern Hemisphere Circulation Features Associated with El Niño-Southern Oscillation Events. J. Clim. 2: 1239–1252. 26. Garreaud, R.D. & D.S. Battisti. 1999. Interannual (ENSO) and Interdecadal (ENSO-like) Variability in the Southern Hemisphere Tropospheric Circulation. J. Clim. 12: 2113–2123. 27. Carril, A.F. & A.Navarra. 2001. Low-frequency variability of the Antarctic Circumpolar wave. Geophy. Res. Lett. 28: 4623–4626. 28. Yarnal, B. & H. Diaz. 1986. Relationships between extremes of the Southern Oscillation and the winter climate of the Anglo-American Pacific Coast. Int. J. Clim. 6: 191–219. 29. Hoerling, M.P. et al. 1997. El Niño, La Ni ña, and the Nonlinearity of Their Teleconnections. J. Clim. 10: 1769–1786. 30. Wang, B. 1995. Interdecadal changes in El Niño onset in the last four decades. J. Clim. 8: 267–286. 31. An, S.I. & B.Wang. 2000. Interdecadal Change of the Structure of the ENSO Mode and Its Impact on the ENSO Frequency. J. Clim. 13: 2044–2055. 32. Trenberth, K.E. & D.P.Stepaniak. 2001. Indices of El Niño Evolution. J. Clim. 14: 1697–1701 33. Graham, N.E. 1994. Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: observation and model results. Clim. Dyn. 10: 135–162. 34. Diaz, H.F. et al. 2001. ENSO variability, teleconnections and climate change. Int. J. Clim. 21: 1845–1862. 35. Gershunov, A. & T.P. Barnett. 1998. Interdecadal Modulation of ENSO Teleconnections. Bull. Amer. Meteorol. Soc. 79: 2715–2725. 36. Kelly, P.M. & P.D. Jones. 1996. Removal of El Niño-Southern Oscillation signal from the gridded surface air temperature data set. J. Geophys. Res. 101: 19,013–19,022. 37. Wallace, J. M. & F.-C. Chang. 1982. Interannual variability of the wintertime polar vortex in the Northern Hemisphere middle stratosphere. J. Meteor. Soc. Jpn. 60: 149–155. 38. van Loon,H.&K. Labitzke. 1987.The Southern Oscillation. Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the quasi-biennial oscillation. Mon. Wea. Rev. 109: 149–155. 39. Hamilton, K. 1993. An examination of observed Southern Oscillation effects in the Northern Hemisphere stratosphere. J. Atmos. Sci. 50: 3468–3473. 40. Baldwin, M.P. & D.J. O’Sullivan. 1995. Stratospheric effects of ENSO-related tropospheric circulation anomalies. J. Clim. 8: 649–667. 41. Kodera, K. et al. 1996. Interannual variability of the winter stratosphere and troposphere in the Northen Hemisphere. J. Meteor. Soc. Jpn. 74: 365–382. 42. Reid, G.C., K.S. Gage & J.R. McAfee. 1989. The thermal response of the tropical atmosphere to variations in equatorial Pacific sea surface temperature. J. Geophys. Res. 94: 14705–14716. 43. Pan, Y.H. & A.H. Oort. 1983. Global climate variations connected with sea surface temperature anomalies in the eastern tropical Pacific Ocean for the 1958–1973 period. Mon. Wea. Rev. 111: 1244–1258. 44. Holton, J.R. & H.C. Tan. 1980. The Influence of the Equatorial Quasi-Biennial Oscillation on the Global Circulation at 50 mb. J. Atmos. Sci. 37: 2200–2208. 45. Calvo, N., M.A. Giorgetta & C. Peña Ortiz. 2007. Sensitivity of the boreal winter circulation in the middle atmosphere to the quasi-biennial oscillation in MAECHAM5 simulations. J. Geophys. Res. 112: D10124, doi:10.1029/2006JD007844. 46. Granier, C. & G.P. Brasseur. 1992. Impact of heterogeneous chemistry on predictions of ozone changes. J. Geophys. Res. 97: 18015–18033. 47. Austin, J., N. Butchart & K.P. Shine. 1992. Possibility of an Arctic ozone hole in a doubled-CO2 climate. Nature 360: 221–225. 48. Hood, L.L., J.L.Jirikowic & J.P. McCormack. 1993. Quasi-Decadal Variability of the Stratosphere: Influence of Long-Term Solar Ultraviolet Variations. J. Atmos. Sci. 50: 3941–3958. 49. Labitzke, K. & H. van Loon. 1997. The signal of the 11-year sunspot cycle in the upper troposphere-lower stratosphere. Spa. Sci. Rev. 80: 393–410. 50. Keshavamurty, R.N. 1982. Response of the atmosphere to sea surface temperature anomalies over the equatorial Pacific and the teleconnections of the Southern Oscillation. J. Atm. Sci. 39: 1241–1259. 51. Blackmon, M.L., J.E. Geisler & E.J. Pitcher. 1983. A general circulation model study of the January climate anomaly pattern associated with interannual variation of equatorial Pacific sea surface temperatures. J. Atm. Sci. 40: 1410–1425. 52. Shukla, J. & J.M.Wallace. 1983. Numerical simulation of the atmospheric response to equatorial Pacific sea surface temperature anomalies. J. Atm. Sci. 40: 1613–1630. 53. Boer, J.G. 1985. Modeling the atmospheric response to the 1982/83 El Niño. In Coupled Ocean-Atmosphere Models, C.J.C. Nihoul, Ed.: 7–17. Elsevier. Amsterdam. 54. Lau,N.-C. 1985. Modelling the seasonal dependence of the atmospheric response to observed El Niños in 1962–76. Mon. Wea. Rev. 113: 1970–1996. 55. Lau, N.-C. & M.J. Nath. 1990. A general circulation model study of the atmospheric response to extratropical SST anomalies observed in 1960–1979. J. Clim. 3: 965–989. 56. Hamilton, K. 1993. A general circulation model simulation of El Niño effects in the extratropical Northern Hemisphere stratosphere. Geophys. Res. Lett. 20: 1803–1806. 57. Lahoz, W.A. 2000. Northern Hemisphere winter stratospheric variability in the Met. Office Unified Model. Quart. J. Roy. Meteorol. Soc. 126: 2605–2630. 58. Braesicke, P. & A. Pyle. 2004. Sensitivity of dynamics and ozone to different representations of SSTs in the Unified Model. Quart. J. Roy. Meteorol. Soc. 99: 1-9. 59. Sassi, F. et al. 2004. The effects of ENSO on the Dynamical, thermal and Chemical Structure of the Middle Atmosphere. J. Geophys. Res. 109: doi:10.1029/2003JD004434. 60. Manzini, E. et al. 2006. The influence of sea surface temperatures on the Northern winter stratosphere: Ensemble simulationswith theMAECHAM5model. J. Clim. 19: 3863–3881. 61. García Herrera,R. et al. 2006. Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res. 111: D06101, doi:10.1029/2005JD006061. 62. Hurrel, J.W. et al. 2006. The dynamical simulation of the Community Atmospheric Model version 3 (CAM3). J. Clim. 19: 2162–2183. 63. García, R. et al. 2007. Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res. 112: D09301, doi:10.1029/2006 JD007485. 64. Richter, J. et al. 2008. Dynamics of the middle atmosphere as simulated by the Whole Atmosphere Community ClimateModel, version 3 (WACCM3). J. Geophys. Res. 113, D08101, doi:10.1029/2007JD009269. 65. Lin, S.J. 2004. A “vertically-Lagrangian” finitevolume dynamical core for global atmospheric models. Mon. Wea. Rev. 132: 2293–2307. 66. Charney, J.G. & P.G. Drazin. 1961. Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 66: 83– 109. 67. Edmon, H.J. Jr.,B.J. Hoskins&M.E. McIntyre. 1980. Eliassen-Palm cross sections for the Troposphere. J. Atmos. Sci. 37: 2600–2616.
Collections