Publication:
One-loop WLWL and ZLZL scattering from the electroweak Chiral Lagrangian with a light Higgs-like scalar

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-02-27
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
By including the recently discovered Higgs-like scalar phi in the Electroweak Chiral Lagrangian, and using the Equivalence Theorem, we carry out the complete one-loop computation of the elastic scattering amplitude for the longitudinal components of the gauge bosons V = W, Z at high energy. We also compute phi phi -> phi phi and the inelastic process V V -> phi phi, and identify the counterterms needed to cancel the divergences, namely the well known a(4) and a(5) chiral parameters plus three additional ones only superficially treated in the literature because of their dimension 8. Finally we compute all the partial waves and discuss the limitations of the one-loop computation due to only approximate unitarity.
Description
Open Access, © The Authors. AD thanks useful conversations with D. Espriu, M. J. Herrero and J. J. Sanz-Cillero. The work has been supported by the spanish grant FPA2011-27853-C02-01 and by the grant BES-2012-056054 (RLD).
Unesco subjects
Keywords
Citation
[1] J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE]. [2] C. Vayonakis, Born Helicity Amplitudes and Cross Sections in Nonabelian Gauge Theories, Lett. Nuovo Cim. 17 (1976) 383 [INSPIRE]. [3] B.W. Lee, C. Quigg and H. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE]. [4] M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting W’s and Z’s, Nucl. Phys. 261 (1985) 379. [5] M.S. Chanowitz, M. Golden and H. Georgi, Low-Energy Theorems for Strongly Interacting W’s and Z’s, Phys. Rev. D 36 (1987) 1490 [INSPIRE]. [6] A. Dobado and J. Pelaez, On The Equivalence theorem in the chiral perturbation theory description of the symmetry breaking sector of the standard model, Nucl. Phys. B 425 (1994) 110 [Erratum ibid. B 434 (1995) 475] [hep ph/9401202] [INSPIRE]. [7] A. Dobado and J.R. Pelaez, The Equivalence theorem for chiral lagrangians, Phys. Lett. B 329 (1994) 469 [Addendum ibid. B 335 (1994) 554] [hep-ph/9404239] [INSPIRE]. [8] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE]. [9] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE]. [10] ATLAS collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168 (2012). [11] CMS collaboration, 1460419, CMS-HIG-12-015 (1460419). [12] CMS collaboration, Search for Resonances in the Dijet Mass Spectrum from 7 TeV pp Collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE]. [13] ATLAS collaboration, Search for heavy vector-like quarks coupling to light quarks in proton-proton collisions at p s = 7 TeV with the ATLAS detector, Phys. Lett. B 712 (2012) 22 [arXiv:1112.5755] [INSPIRE]. [14] ATLAS collaboration, Search for long-lived, multi charged particles in pp collisions at p s=7 TeV using the ATLAS detector, Phys. Lett. B 722 (2013) 305 [arXiv:1301.5272] [INSPIRE]. [15] D. Espriu, F. Mescia and B. Yencho, Radiative corrections to WL WL scattering in composite Higgs models, Phys. Rev. D 88 (2013) 055002 [arXiv:1307.2400] [INSPIRE]. [16] A. Azatov, R. Contino and J. Galloway, Model Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE]. [17] I. Brivio, et al., Disentangling a dynamical Higgs, arXiv:1311.1823 [INSPIRE]. [18] R. Alonso, M. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light Dynamical “Higgs Particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE]. [19] A. Pich, I. Rosell and J.J. Sanz-Cillero, Strongly Coupled Models with a Higgs-like Boson, EPJ Web Conf. 60 (2013) 19009 [arXiv:1307.1958] [INSPIRE]. [20] E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE]. [21] C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H. Mebane et al., Effective Field Theory: A Modern Approach to Anomalous Couplings, Annals Phys. 335 (2013) 21 [arXiv:1205.4231] [INSPIRE]. [22] G. Buchalla, O. Cat`a and C. Krause, Complete Electroweak Chiral Lagrangian with a Light Higgs at NLO, arXiv:1307.5017 [INSPIRE]. [23] G. Buchalla and O. Cat`a, Effective Theory of a Dynamically Broken Electroweak Standard Model at NLO, JHEP 07 (2012) 101 [arXiv:1203.6510] [INSPIRE]. [24] T. Appelquist and C.W. Bernard, Strongly Interacting Higgs Bosons, Phys. Rev. D 22 (1980) 200 [INSPIRE]. [25] A.C. Longhitano, Heavy Higgs Bosons in the Weinberg- alam Model, Phys. Rev. D 22 (1980) 1166 [INSPIRE]. [26] A.C. Longhitano, Low-Energy Impact of a Heavy Higgs Boson Sector, Nucl. Phys. B 188 (1981) 118 [INSPIRE]. [27] A. Dobado, D. Espriu and M.J. Herrero, Chiral Lagrangians as a tool to probe the symmetry breaking sector of the SM at LEP, Phys. Lett. B 255 (1991) 405 [INSPIRE]. [28] B. Holdom and J. Terning, Large corrections to electroweak parameters in Technicolor theories, Phys. Lett. B 247 (1990) 88 [INSPIRE]. [29] A. Dobado, D. Espriu and M.J. Herrero, Chiral Lagrangians as a tool to probe the symmetry breaking sector of the SM at LEP, Phys. Lett. B 255 (1991) 405 [INSPIRE]. [30] M. Golden and L. Randall, Radiative Corrections to Electroweak Parameters in Technicolor Theories, Nucl. Phys. B 361 (1991) 3 [INSPIRE]. [31] S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE]. [32] J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE]. [33] J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE]. [34] R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Light ‘Higgs’, yet strong interactions, J. Phys. G 41 (2014) 025002 [arXiv:1308.1629] [INSPIRE]. [35] R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong Double Higgs Production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE]. [36] R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, arXiv:1005.4269 [INSPIRE [37] R. Grober and M. Muhlleitner, Composite Higgs Boson Pair Production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE]. [38] G. B´elanger, B. Dumont, U. Ellwanger, J. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE]. [39] T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE]. [40] T. Corbett, O. ´Eboli, J. Gonzalez Fraile and M. Gonzalez-Garcia, Robust determination of the scalar boson couplings, arXiv:1306.0006 [INSPIRE [41] J. Ellis and T. You, Updated Global Analysis of Higgs Couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE]. [42] P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, arXiv:1303.3570 [INSPIRE]. [43] A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE]. [44] E. Halyo, Technidilaton or Higgs?, Mod. Phys. Lett. A 8 (1993) 275 [INSPIRE]. [45] W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE]. [46] K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep ph/0412089] [INSPIRE]. [47] R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE]. [48] D. Barducci, A. Belyaev, M. Brown, S. De Curtis, S. Moretti et al., The 4-Dimensional Composite Higgs Model (4DCHM) and the 125 GeV Higgs-like signals at the LHC, JHEP 09 (2013) 047 [arXiv:1302.2371] [INSPIRE]. [49] D.B. Kaplan and H. Georgi, SU(2) x U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE]. [50] S. Dimopoulos and J. Preskill, Massless Composites With Massive Constituents, Nucl. Phys. B 199 (1982) 206 [INSPIRE]. [51] T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys. B 243 (1984) 125 [INSPIRE]. [52] D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE [53] H. Georgi, D.B. Kaplan and P. Galison, Calculation of the Composite Higgs Mass, Phys. Lett. B 143 (1984) 152 [INSPIRE]. [54] H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE]. [55] M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [INSPIRE]. [56] G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE]. [57] D. Espriu and B. Yencho, Longitudinal WW scattering in light of the “Higgs boson” discovery, Phys. Rev. D 87 (2013) 055017 [arXiv:1212.4158] [INSPIRE]. [58] S.L. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys. 22 (1961) 579. [59] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264 [INSPIRE]. [60] A. Salam, Elementary Particle Physics, in Proc. 8th Nobel Symp., N. Svartholm ed., pg. 367, Stockholm, Almqvist and Wiksells, 1968. [61] A. Dobado and M.J. Herrero, Phenomenological Lagrangian Approach to the Symmetry Breaking Sector of the Standard Model, Phys. Lett. B 228 (1989) 495 [INSPIRE]. [62] A. Dobado and M.J. Herrero, Testing the Hypothesis of Strongly Interacting Longitudinal Weak Bosons in Electron - Positron Collisions at TeV Energies, Phys. Lett. B 233 (1989) 505 [INSPIRE]. [63] J.F. Donoghue and C. Ramirez, Symmetry Breaking Schemes and WW Scattering, Phys. ett. B 234 (1990) 361 [INSPIRE]. [64] R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure the Higgs boson mass and self-coupling?, Phys. Rev. D 88 (2013) 055024 [arXiv:1305.6397] [INSPIRE [65] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, arXiv:1310.1921 [INSPIRE]. [66] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep ph/0012260] [INSPIRE]. [67] T. Hahn and M. P´erez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE]. [68] J. Kuipers, T. Ueda, J. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
Collections