Publication:
Magnetic transitions in alpha-Fe_2O_3 nanowires

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-11-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Magnetic transitions in single-crystal alpha-F_2O_3 (hematite) nanowires, grown by thermal oxidation of iron powder, have been studied in the range of 5-1023 K with a superconducting quantum interference device below room temperature and with a vibrating sample magnetometer at higher temperatures. The broad temperature range covered enables us to compare magnetic transitions in the nanowires with the transitions reported for bulk hematite. Morin temperatures (T-M) of the nanowires and of hematite bulk reference powder were found to be 123 and 263 K, respectively. Also the Neel temperature (T-N) of the nanowires, 852 K, was lower than the bulk T-N value. Measurements of the magnetization as a function of temperature show an enhanced signal in the nanowires, which suggests a decrease in the anti ferromagnetic coupling. A coercive field observed below T-M in the hysteresis loops of the nanowires is tentatively explained by the presence of a magnetic phase.
Description
©) 2009 American Institute of Physics. This work has been supported by MEC through project Nos. MAT2006-01259 and MAT2007-65965-C02-02. High temperature VSM measurements have been carried out at CT-ISOM funded by the Spanish “Ministerio de Ciencia e Innovación.”
Unesco subjects
Keywords
Citation
1. A. Kay, I. Cesar, and M. Grätzel, J. Am. Chem. Soc. 128, 15714 2006. 2. L. Huo, W. Li, L. Hu, H. Cui, S. Xi, J. Wang, B. Zhao, Y. Shen, and Z. Lu,Chem. Mater. 12, 790 2000. 3. Y. W. Zhu, T. Yu, C. H. Sow, Y. J. Liu, A. T. Wee, X. J. Xu, C. T. Lim, and J. T. L. Thong, Appl. Phys. Lett. 87, 023103 2005. 4. Z. Fan, X. Wen, S. Yang, and J. G. Lu, Appl. Phys. Lett. 87, 013113 2005. 5. A. K. Gupta and M. Gupta, Biomaterials 26, 3995 2005. 6. D. S. Xue, C. X. Gao, Q. F. Liu, and L. Y. Zhang, J. Phys.: Condens. Matter 15, 1455 2003. 7. L. Y. Zhang, D. S. Xue, F. Xu, A. B. Gui, and C. X. Gao, J. Phys.: Condens. Matter 16, 4541 2004. 8. Y. Y. Xu, X. F. Rui, Y. Y. Fu, and H. Zhang, Chem. Phys. Lett. 410, 36 2005. 9. L. Suber, P. Imperatori, G. Ausanio, F. Fabbri, and H. Hoffmeister, J. Phys. Chem. B 109, 7103 2005. 10. C. H. Kim, H. J. Chun, D. S. Kim, S. Y. Kim, J. Park, J. Y. Moon, G. Lee, J. Yoon, Y. Jo, M. Jung, S. I. Jung, and C. J. Lee, Appl. Phys. Lett. 89, 223103 2006. 11. Y. Chueh, M. Lai, J. Liang, L. Chou, and Z. L. Wang, Adv. Funct. Mater. 16, 2243 2006. 12. S. Zeng, K. Tang, and T. Li, J. Colloid Interface Sci. 312, 513 2007. 13. M. F. Chioncel, C. Díaz-Guerra, and J. Piqueras, J. Appl. Phys. 104, 124311 (2008) 14. R. D. Zysler, D. Fiorani, A. M. Testa, L. Suber, E. Agostinelli, and M. Godinho, Phys. Rev. B 68, 212408 2003. 15. N. Amin and S. Arajs, Phys. Rev. B 35, 4810 1987. 16. 16M. Cao, T. Liu, S. Gao, G. Sun, X. Wu, C. Hu, and Z. L. Wang, Angew. Chem., Int. Ed. 44, 4197 2005. 17. 17X. Yu, C. Cao, and X. An, Chem. Mater. 20, 1936 2008.
Collections