Publication:
Spectral study of the HESS J1745-290 gamma-ray source as dark matter signal

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-04
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Iop Publishing Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study the main spectral features of the gamma-ray fluxes observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source during the years 2004, 2005 and 2006. In particular, we show that these data are well fitted as the secondary gamma-rays photons generated from dark matter annihilating into Standard Model particles in combination with a simple power law background. We present explicit analyses for annihilation in a single standard model particle-antiparticle pair. In this case, the best fits are obtained for the u (u) over bar and d (d) over bar quark channels and for the W+W- and ZZ gauge bosons, with background spectral index compatible with the Fermi-Large Area Telescope (LAT) data from the same region. The fits return a heavy WIMP, with a mass above similar to 10 TeV, but well below the unitarity limit for thermal relic annihilation.
Description
© 2013 IOP Publishing Ltd and Sissa Medialab srl. We thank Alvaro de la Cruz-Dombriz for useful comments. This work has been supported by MICINN (Spain) project numbers FIS 2008-01323, FIS2011-23000, FPA2011-27853-01 and Consolider Ingenio MULTIDARK CSD2009-00064.
Unesco subjects
Keywords
Citation
[1] MAGIC collaboration, J. Aleksic et al., Searches for Dark Matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope, JCAP 06 (2011) 035 [arXiv:1103.0477] [INSPIRE]. [2] Fermi-LAT collaboration, A. Abdo et al., Observations of Milky Way Dwarf Spheroidal galaxies with the Fermi-LAT detector and constraints on Dark Matter models, Astrophys. J. 712 (2010) 147 [arXiv:1001.4531] [INSPIRE]. [3] CANGAROO-II collaboration, K. Tsuchiya et al., Detection of sub-TeV gamma-rays from the Galactic Center direction by CANGAROO-II, Astrophys. J. 606 (2004) L115 [astro-ph/0403592] [INSPIRE]. [4] VERITAS collaboration, K. Kosack et al., TeV gamma-ray observations of the galactic center, Astrophys. J. 608 (2004) L97 [astro-ph/0403422] [INSPIRE]. [5] HESS collaboration, F. Aharonian et al., Very high-energy gamma rays from the direction of Sagittarius A*, Astron. Astrophys. 425 (2004) L13 [astro-ph/0408145] [INSPIRE]. [6] HESS collaboration, F. Aharonian and F. Aharonian, Spectrum and variability of the Galactic Center VHE gamma-ray source HESS J1745-290, Astron. Astrophys. 503 (2009) 817 [arXiv:0906.1247] [INSPIRE]. [7] MAGIC collaboration, J. Albert et al., Observation of gamma-rays from the galactic center with the magic telescope, Astrophys. J. 638 (2006) L101 [astro-ph/0512469] [INSPIRE]. [8] Fermi/LAT collaboration, V. Vitale and A. Morselli, Indirect Search for Dark Matter from the center of the Milky Way with the Fermi-Large Area Telescope, arXiv:0912.3828 [INSPIRE]. [9] M. Chernyakova, D. Malyshev, F. Aharonian, R. Crocker and D. Jones, The high-energy, Arcminute-scale galactic center gamma-ray source, Astrophys. J. 726 (2011) 60 [arXiv:1009.2630] [INSPIRE]; T. Linden, E. Lovegrove and S. Profumo, The Morphology of Hadronic Emission Models for the Gamma-Ray Source at the Galactic Center, Astrophys. J. 753 (2012) 41 [arXiv:1203.3539] [INSPIRE]. [10] D. Horns, TeV gamma-radiation from dark matter annihilation in the Galactic center, Phys. Lett. B 607 (2005) 225 [Erratum ibid. B 611 (2005) 297] [astro-ph/0408192] [INSPIRE]. [11] L. Bergstrom, T. Bringmann, M. Eriksson and M. Gustafsson, Gamma rays from Kaluza-Klein dark matter, Phys. Rev. Lett. 94 (2005) 131301 [astro-ph/0410359] [INSPIRE]; Gamma rays from heavy neutralino dark matter, Phys. Rev. Lett. 95 (2005) 241301 [hep-ph/0507229] [INSPIRE]. [12] S. Profumo, TeV gamma-rays and the largest masses and annihilation cross sections of neutralino dark matter, Phys. Rev. D 72 (2005) 103521 [astro-ph/0508628] [INSPIRE]. [13] HESS collaboration, F. Aharonian et al., H.E.S.S. observations of the Galactic Center region and their possible dark matter interpretation, Phys. Rev. Lett. 97 (2006) 221102 [Erratum ibid. 97 (2006) 249901] [astro-ph/0610509] [INSPIRE]. [14] F. Aharonian and A. Neronov, High energy gamma rays from the massive black hole in the Galactic center, Astrophys. J. 619 (2005) 306 [astro-ph/0408303] [INSPIRE]. [15] J. Cembranos, V. Gammaldi and A. Maroto, Possible dark matter origin of the gamma ray emission from the galactic center observed by HESS, Phys. Rev. D 86 (2012) 103506 [arXiv:1204.0655] [INSPIRE]. [16] A.V. Belikov, G. Zaharijas and J. Silk, Study of the Gamma-ray Spectrum from the Galactic Center in view of Multi-TeV Dark Matter Candidates, Phys. Rev. D 86 (2012) 083516 [arXiv:1207.2412] [INSPIRE]. [17] R.M. Crocker, M. Fatuzzo, R. Jokipii, F. Melia and R.R. Volkas, The AGASA/SUGAR anisotropies and TeV gamma rays from the Galactic Center: A Possible signature of extremely high-energy neutrons, Astrophys. J. 622 (2005) 892 [astro-ph/0408183] [INSPIRE]. [18] Q.D. Wang, F. Lu and E. Gotthelf, G359.95-0.04: pulsar candidate near sgr a*, Mon. Not. Roy. Astron. Soc. 367 (2006) 937 [astro-ph/0512643] [INSPIRE]; B. Aschenbach, N. Grosso, D. Porquet and P. Predehl, X-ray flares reveal mass and angular momentum of the Galactic Center black hole, Astron. Astrophys. 417 (2004) 71 [astro-ph/0401589] [INSPIRE]. [19] A. Atoyan and C.D. Dermer, TeV emission from the Galactic Center black-hole plerion, Astrophys. J. 617 (2004) L123 [astro-ph/0410243] [INSPIRE]. [20] G.R. Blumenthal, S. Faber, R. Flores and J.R. Primack, Contraction of Dark Matter Galactic Halos Due to Baryonic Infall, Astrophys. J. 301 (1986) 27 [INSPIRE]; O.Y. Gnedin, A.V. Kravtsov, A.A. Klypin and D. Nagai, Response of dark matter halos to condensation of baryons: Cosmological simulations and improved adiabatic contraction model, Astrophys. J. 616 (2004) 16 [astro-ph/0406247] [INSPIRE]. [21] F. Prada, A. Klypin, J. Flix Molina, M. Mart´ınez and E. Simonneau, Dark Matter Annihilation in the Milky Way Galaxy: Effects of Baryonic Compression, Phys. Rev. Lett. 93 (2004) 241301 [astro-ph/0401512] [INSPIRE]. [22] E. Romano-D´ıaz, I. Shlosman, Y. Hoffman and C. Heller, Erasing Dark Matter Cusps in Cosmological Galactic Halos with Baryons, Astrophys. J. Lett. 685 (2008) L105 [arXiv:0808.0195]; E. Romano-D´ıaz, I. Shlosman, C. Heller and Y. Hoffman, Dissecting Galaxy Formation: I. Comparison Between Pure Dark Matter and Baryonic Models, Astrophys. J. 702 (2009) 1250 [arXiv:0901.1317] [INSPIRE]; A.V. Maccio’, G. Stinson, C.B. Brook, J. Wadsley, H. Couchman et al., Halo expansion in cosmological hydro simulations: towards a baryonic solution of the cusp/core problem in massive spirals, arXiv:1111.5620 [INSPIRE]. [23] P. Salucci, M.I. Wilkinson, M.G. Walker, G.F. Gilmore, E.K. Grebel et al., Dwarf spheroidal galaxy kinematics and spiral galaxy scaling laws, arXiv:1111.1165 [INSPIRE]. [24] T. Sj¨ostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE]. [25] J.F. Navarro, C.S. Frenk and S.D. White, A Universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE]. [26] J. Cembranos, A. de la Cruz-Dombriz, A. Dobado, R. Lineros and A. Maroto, Photon spectra from WIMP annihilation, Phys. Rev. D 83 (2011) 083507 [arXiv:1009.4936] [INSPIRE]; Photon spectra from quark generation by WIMPs, AIP Conf. Proc. 1343 (2011) 595 [arXiv:1011.2137] [INSPIRE]; Fitting formulae for photon spectra from WIMP annihilation, J. Phys. Conf. Ser. 314 (2011) 012063 [arXiv:1012.4473] [INSPIRE]; A. de la Cruz-Dombriz and V. Gammaldi, Dark Matter with Photons, arXiv:1109.5027 [INSPIRE]; http://teorica.fis.ucm.es/PaginaWeb/photon spectra.html. [27] J. Cohen-Tanugi, M. Pohl, O. Tibolla and E. Nuss, The GeV-band source population in the Galactic-Center region as seen by Fermi Large Area Telescope, in Proc. 31st ICRC (Lodz) (2009) 645. [28] K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE]. [29] J. Alcaraz, J. Cembranos, A. Dobado and A.L. Maroto, Limits on the brane fluctuations mass and on the brane tension scale from electron positron colliders, Phys. Rev. D 67 (2003) 075010 [hep-ph/0212269] [INSPIRE]; L3 collaboration, P. Achard et al., Search for branons at LEP, Phys. Lett. B 597 (2004) 145 [hep-ex/0407017] [INSPIRE]; J. Cembranos, A. Dobado and A.L. Maroto, Brane skyrmions and wrapped states, Phys. Rev. D 65 (2002) 026005 [hep ph/0106322] [INSPIRE]; Branon search in hadronic colliders, Phys. Rev. D 70 (2004) 096001 [hep-ph/0405286] [INSPIRE]; Branon radiative corrections to collider physics and precision observables, Phys. Rev. D 73 (2006) 035008 [hep-ph/0510399] [INSPIRE]; Dark matter clues in the muon anomalous magnetic moment, Phys. Rev. D 73 (2006) 057303 [hep-ph/0507066] [INSPIRE]; Some model-independent phenomenological consequences of flexible brane worlds, J. Phys. A 40 (2007) 6631 [hep-ph/0611024] [INSPIRE]. J.A. Cembranos, J.L. Diaz-Cruz and L. Prado, Impact of DM direct searches and the LHC analyses on branon phenomenology, Phys. Rev. D 84 (2011) 083522 [arXiv:1110.0542] [INSPIRE]. [30] A. Dobado and A.L. Maroto, The Dynamics of the Goldstone bosons on the brane, Nucl. Phys. B 592 (2001) 203 [hep-ph/0007100] [INSPIRE]; J. Cembranos, A. Dobado and A.L. Maroto, Brane world dark matter, Phys. Rev. Lett. 90 (2003) 241301 [hep-ph/0302041] [INSPIRE]; Cosmological and astrophysical limits on brane fluctuations, Phys. Rev. D 68 (2003) 103505 [hep-ph/0307062] [INSPIRE]; A.L. Maroto, The Nature of branon dark matter, Phys. Rev. D 69 (2004) 043509 [hep-ph/0310272] [INSPIRE]; Brane oscillations and the cosmic coincidence problem, Phys. Rev. D 69 (2004) 101304 [hep-ph/0402278] [INSPIRE]; J. Cembranos, A. Dobado and A.L. Maroto, Dark geometry, Int. J. Mod. Phys. D 13 (2004) 2275 [hep-ph/0405165] [INSPIRE]; J. Cembranos, A. de la Cruz-Dombriz, A. Dobado and A.L. Maroto, Is the CMB Cold Spot a gate to extra dimensions?, JCAP 10 (2008) 039 [arXiv:0803.0694] [INSPIRE]. [31] J. Cembranos, A. de la Cruz-Dombriz, V. Gammaldi and A. Maroto, Detection of branon dark matter with gamma ray telescopes, Phys. Rev. D 85 (2012) 043505 [arXiv:1111.4448] [INSPIRE]. [32] WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE]. [33] S. Rudaz and F. Stecker, Cosmic ray anti-protons, positrons and gamma-rays from halo dark matter annihilation, Astrophys. J. 325 (1988) 16 [INSPIRE]; J.A. Cembranos, J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP solutions to small scale structure problems, Phys. Rev. Lett. 95 (2005) 181301 [hep-ph/0507150] [INSPIRE]; J.A. Cembranos, J.L. Feng and L.E. Strigari, Resolving Cosmic Gamma Ray Anomalies with Dark Matter Decaying Now, Phys. Rev. Lett. 99 (2007) 191301 [arXiv:0704.1658] [INSPIRE]; Exotic Collider Signals from the Complete Phase Diagram of Minimal Universal Extra Dimensions, Phys. Rev. D 75 (2007) 036004 [hep-ph/0612157] [INSPIRE]; J.A. Cembranos and L.E. Strigari, Diffuse MeV Gamma-rays and Galactic 511 keV Line from Decaying WIMP Dark Matter, Phys. Rev. D 77 (2008) 123519 [arXiv:0801.0630] [INSPIRE]; J.A. Cembranos, Dark Matter from R2-gravity, Phys. Rev. Lett. 102 (2009) 141301 [arXiv:0809.1653] [INSPIRE]; The Newtonian limit at intermediate energies, Phys. Rev. D 73 (2006) 064029 [gr-qc/0507039] [INSPIRE]; T. Bringmann and C. Weniger, Gamma Ray Signals from Dark Matter: Concepts, Status and Prospects, Phys. Dark Univ. 1 (2012) 194 [arXiv:1208.5481] [INSPIRE].
Collections