Publication:
Agreement in late twentieth century Southern Hemisphere stratospheric temperature trends in observations and CCMVal-2, CMIP3, and CMIP5 models

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-01-27
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Geophysical Union
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present a comparison of temperature trends using different satellite and radiosonde observations and climate (GCM) and chemistry-climate model (CCM) outputs, focusing on the role of photochemical ozone depletion in the Antarctic lower stratosphere during the second half of the twentieth century. Ozone-induced stratospheric cooling peaks during November at an altitude of approximately 100 hPa in radiosonde observations, with 1969 to 1998 trends in the range of -3.8 to -4.7 K/dec. This stratospheric cooling trend is more than 50% greater than the previously estimated value of -2.4 K/dec, which suggested that the CCMs were overestimating the stratospheric cooling, and that the less complex GCMs forced by prescribed ozone were matching observations better. Corresponding ensemble mean model trends are -3.8K/dec for the CCMs, -3.5K/dec for the CMIP5 GCMs, and -2.7K/dec for the CMIP3 GCMs. Accounting for various sources of uncertainty-including sampling uncertainty, measurement error, model spread, and trend confidence intervals-observations and CCM and GCM ensembles are consistent in this new analysis. This consistency does not apply to each individual that makes up the GCM and CCM ensembles, and some do not show significant ozone-induced cooling. Nonetheless, analysis of the joint ozone and temperature trends in the CCMs suggests that the modeled cooling/ozone-depletion relationship is within the range of observations. Overall, this study emphasizes the need to use a wide range of observations for model validation as well as sufficient accounting of uncertainty in both models and measurements.
Description
© 2013 American Geophysical Union. We thank Greg Bodeker, Nathan Gillett, Susan Solomon, and Dave Thompson for discussion and useful input. We thank Steve Sherwood and the Met Office for the provision of the IUK (www.ccrc.unsw.edu.au/staff/profiles/sherwood/radproj/index.html) and HadAT2 (www.metoffice.gov.uk/hadobs) radiosonde data sets, respectively. We acknowledge the World Climate Research Programme's (WCRP) Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (as listed in Tables S2 and S3 of this paper) for producing and making available their model output. For CMIP, the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led the development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We acknowledge the Chemistry-Climate Model Validation Activity of WCRP's Stratospheric Processes and their Role in Climate project, and the participating model groups (as listed in Table S4 of this paper), for organizing and coordinating the CCMVal-2 activity, and the British Atmospheric Data Centre for collecting and archiving the model output. Natalia Calvo was partially supported by the Advanced Study Program from the National Center for Atmospheric Research. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. Leopold Haimberger was supported by the Austrian Science Funds (FWF) project P21772-N22. We thank Alexey Karpechko, Darryn Waugh, and an anonymous reviewer for their comments on an earlier version of the manuscript.
Keywords
Citation
Austin, J., et al. (2009), Coupled chemistry climate model simulations of stratospheric temperatures and their trends for the recent past, Geophys. Res. Lett., 36(13), L13809, doi:10.1029/2009GL038462. Austin, J., et al. (2010), Chemistry-climate model simulations of spring Antarctic ozone, J. Geophys. Res., 115, D00M11, doi:10.1029/2009JD013577. Baldwin, M. P., et al. (2010), Effects of the stratosphere on the troposphere, in SPARC Report on the Evaluation of Chemistry-Climate Models, edited by V. Eyring, T. G. Shepherd, D. W. Waugh, pp 372–412, SPARC Report No. 5, WRCP-132, WMO/TD-No. 1526, World Meteorological Organization, Geneva, Switzerland. Butchart, N., et al. (2011), Multimodel climate and variability of the stratosphere, J. Geophys. Res., 116(D5), D05102, doi:10.1029/2010JD014995. Cai, W., and T. Cowan (2007), Trends in Southern Hemisphere Circulation in IPCC AR4 Models over 1950–99: Ozone Depletion versus Greenhouse Forcing, J. Clim., 20, 681–693. Calvo, N., R. R. García, D. R. R. Marsh, M. J. Mills, D. E. Kinnison, and P. J. Young (2012), Reconciling modeled and observed temperature trends over Antarctica, Geophys. Res. Lett. 39, L16803, doi:10.1029/2012GL052526. Cionni, I., V. Eyring, J. F. Lamarque, W. J. Randel, D. S. Stevenson, F. Wu, G. E. Bodeker, T. G. Shepherd, D. T. Shindell, and D. W. Waugh (2011), Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing, Atmos. Chem. Phys., 11, 11267–11292. Cordero, E. C., and P.M. Forster (2006), Stratospheric variability and trends in models used for the IPCC AR4, Atmos. Chem. Phys., 6, 5369–5380. Dee, D. P., et al. (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137(656), 553–597. Eyring, V., M. P. Chipperfield, M. A. Giorgetta, D. E. Kinnison, E. Manzini, K. Matthes, P. A. Newman, S. Pawson, T. G. Shepherd, and D. W. Waugh (2008), Overview of the new CCMVal reference and sensitivity simulations in support of upcoming ozone and climate assessments and the planned SPARC CCMVal, SPARC Newsletter, 30, 20–26. Eyring, V., et al. (2006), Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past, J. Geophys. Res., 111, D22308, doi:10.1029/2006JD007327. Forster, P. M., et al. (2011), Stratospheric Changes and Climate, in Scientific Assessment of Ozone Depletion: 2010, pp 4.1–4.60, Global Ozone Research and Monitoring Project-Report No. 52, World Meteorological Organization, Geneva, Switzerland. Free, M. (2011), The Seasonal Structure of Temperature Trends in the Tropical Lower Stratosphere, J. Clim., 24(3), 859–866. Garny, H., M. Dameris, and A. Stenke (2009), Impact of prescribed SSTs on climatologies and long-term trends in CCM simulations, Atmos. Chem. Phys., 9(16), 6017–6031. Gettelman, A., et al. (2010), Multimodel assessment of the upper troposphere and lower stratosphere: Tropics and global trends, J. Geophys. Res., 115, D00M08, doi:10.1029/2009JD013638. Gillett, N. P., and D. W. Thompson (2003), Simulation of recent Southern Hemisphere climate change, Science, 302(5643), 273–275. Gillett, N. P., et al. (2011), Attribution of observed changes in stratospheric ozone and temperature, Atmos. Chem. Phys., 11(2), 599–609. Haimberger, L., C. Tavolato, and S. Sperka (2008), Toward Elimination of the Warm Bias in Historic Radiosonde Temperature Records—Some New Results from a Comprehensive Intercomparison of Upper-Air Data, J. Clim., 21(18), 4587–4606. Haimberger, L., C. Tavolato, and S. Sperka (2012), Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations, J. Clim., 25, 8108–8131. Hassler, B., G. E. Bodeker, S. Solomon, and P. J. Young (2011a), Changes in the polar vortex: Effects on Antarctic total ozone observations at various stations, Geophys. Res. Lett., 38, L01805, doi:10.1029/2010GL045542. Hassler, B., J. S. Daniel, B. J. Johnson, S. Solomon, and S. J. Oltmans (2011b), An assessment of changing ozone loss rates at South Pole: Twenty-five years of ozonesonde measurements, J. Geophys. Res., 116 (D22), D22301, doi:10.1029/2011JD016353. Hegglin, M. I., et al. (2010), Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics, J. Geophys. Res., 115, D00M09, doi:10.1029/2010JD013884. Hurwitz, M. M., P. A. Newman, F. Li, L. D. Oman, O. Morgenstern, P. Braesicke, and J. A. Pyle (2010), Assessment of the breakup of the Antarctic polar vortex in two new chemistry-climate models, J. Geophys. Res., 115(D7), D07105, doi:10.1029/2009JD012788. IPCC (2007), Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon, et al., Cambridge University Press, New York, NY, USA. Kang, S. M., L. M. Polvani, J. C. Fyfe, and M. Sigmond (2011), Impact of Polar Ozone Depletion on Subtropical Precipitation, Science, 332, 951–954. Karpechko, A. Y., N. P. Gillett, G. J. Marshall, and A. A. Scaife (2008), Stratospheric influence on circulation changes in the Southern Hemisphere troposphere in coupled climate models, Geophys. Res. Lett., 35(20), L20806, doi:10.1029/2008GL035354. Lin, P., Q. Fu, S. Solomon, and J. M. Wallace (2009), Temperature Trend Patterns in Southern Hemisphere High Latitudes: Novel Indicators of Stratospheric Change, J. Clim., 22(23), 6325–6340. Manzini, E., B. Steil, C. Brühl,M. A. Giorgetta, and K. Krüger (2003), A new interactive chemistry-climate model: 2. Sensitivity of themiddle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling, J. Geophys. Res., 108(D14), 4429, doi:10.1029/2002JD002977. Mclandress, C., and T. G. Shepherd (2009), Simulated Anthropogenic Changes in the Brewer–Dobson Circulation, Including Its Extension to High Latitudes, J. Clim., 22(6), 1516. Mears, C. A., and F. J. Wentz (2009), Construction of the Remote Sensing Systems V3.2 Atmospheric Temperature Records from the MSU and AMSU Microwave Sounders, J. Atmos. Ocean. Tech., 26(6), 1040–1056. Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J. Stouffer, M. Latif, B. Mcavaney, and J. F. B. Mitchell (2007), TheWCRP CMIP3Multimodel Dataset: A New Era in Climate Change Research, Bull. Am.Meteorol. Soc., 88(9), 1383–1394. Miller, R. L., G. A. Schmidt, and D. T. Shindell (2006), Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models, J. Geophys. Res., 111(D18), D18101, doi:10.1029/2005JD006323. Morgenstern, O., et al. (2010), Reviewof the formulation of present-generation stratospheric chemistry-climate models and associated external forcings, J. Geophys. Res., 115, D00M02, doi:10.1029/2009JD013728. Newman, P. A., and E. R. Nash (2005), The Unusual Southern Hemisphere Stratosphere Winter of 2002, J. Atmos. Sci., 62(3), 614–628. Newman, P. A., J. S. Daniel, D. W. Waugh, and E. R. Nash (2007), A new formulation of equivalent effective stratospheric chlorine (EESC), Atmos. Chem. Phys., 7(17), 4537–4552. Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S.-W. Son (2011), Stratospheric Ozone Depletion: The Main Driver of Twentieth-Century Atmospheric Circulation Changes in the Southern Hemisphere, J. Clim., 24(3), 795–812. Randel, W. J., and F. Wu (1999), Cooling of the Arctic and Antarctic Polar Stratospheres due to Ozone Depletion, J. Clim., 12(5), 1467–1479. Randel, W. J., et al. (2009), An update of observed stratospheric temperature trends, J. Geophys. Res., 114(D2), D02107, doi:10.1029/2008JD010421. Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor (2000), Statistical significance of trends and trend differences in layer-average atmospheric temperature time series, J. Geophys. Res., 105(D6), 7337–7356. Sherwood, S. C., C. L. Meyer, R. J. Allen, and H. A. Titchner (2008), Robust Tropospheric Warming Revealed by Iteratively Homogenized Radiosonde Data, J. Clim., 21(20), 5336–5352. Shine, K. P., et al. (2003), A comparison of model-simulated trends in stratospheric temperatures, Q. J. Roy. Meteorol. Soc., 129(590), 1565–1588. Solomon, S. (1999), Stratospheric Ozone Depletion: A Review of Concepts and History, Rev. Geophys., 37, 275–316. Son, S. W., et al. (2010), Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment, J. Geophys. Res., 115, D00M07, doi:10.1029/2010JD014271. Taylor, K. E., R. J. Stouffer, and G. A. Meehl (2012), An Overview of CMIP5 and the Experiment Design, Bull. Am. Meteorol. Soc., 93, 485–498. Thompson, D. W., and S. Solomon (2002), Interpretation of Recent Southern Hemisphere Climate Change, Science, 296(5569), 895–899. Thompson, D. W. J., and S. Solomon (2005), Recent Stratospheric Climate Trends as Evidenced in Radiosonde Data: Global Structure and Tropospheric Linkages, J. Clim., 18(22), 4785–4795. Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly (2011), Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change, Nat. Geosci., 4(11), 741–749. Thorne, P. W., J. R. Lanzante, T. C. Peterson, D. J. Seidel, and K. P. Shine (2010), Tropospheric temperature trends: history of an ongoing controversy, Wiley Interdisc. Rev.: Clim. Change, 2(1), 66–88. Thorne, P. W., D. E. Parker, S. F. B. Tett, P. D. Jones, M. McCarthy, H. Coleman, and P. Brohan (2005), Revisiting radiosonde upper air temperatures from 1958 to 2002, J. Geophys. Res., 110(D18), D18105, doi:10.1029/2004JD005753. Wang, L., and D. W. Waugh (2012), Chemistry-climate model simulations of recent trends in lower stratospheric temperature and stratospheric residual circulation, J. Geophys. Res., 117, D09109, doi:10.1029/2011JD017130. Wilks, D. S. (2006), Statistical Methods in the Atmospheric Sciences, Academic Press, Burlington, MA, USA. Young, P. J., D. W. J. Thompson, K. H. Rosenlof, S. Solomon, and J.-F. Lamarque (2011), The seasonal cycle and interannual variability in stratospheric temperatures and links to the Brewer-Dobson circulation: An analysis of MSU and SSU data, J. Clim., 24, 6243–6258.
Collections