Publication:
Structural and cathodoluminescence assessment of transition metal oxide nanostructures grown by thermal deposition methods

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-04
Authors
Chioncel, M.
Piqueras de Noriega, Javier
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Academic Press LTD-Elsevier Science LTD
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Nanostructures of two transition metal oxides, WO(3) and α-Fe_2O_3, have been grown by a thermal deposition method without a catalyst and characterized by x-ray diffraction, scanning electron microscopy (SEM), high-resolution transmission electron microscopy and cathodoluminescence (CL) in the SEM. WO(3) micro and nanorods exhibit CL emission two orders of magnitude higher than CL intensity from the untreated oxide. α-Fe_2O_3 nanostructures with different morphologies (wires, belts, rods, urchins) were grown at different temperatures on Fe substrates. CL spectra of these nanostructures show emission bands related to charge transfer and ligand field transitions.
Description
©2008 Elsevier Ltd. All rights reserved. International Workshop on Beam Injection Assessment of Microstructure in Semiconductors (9. 2008. Toledo, España). This work has been supported by MEC through project MAT2006-01259. MFC acknowledges The financial support received from UCM and Banco Santander.
Unesco subjects
Keywords
Citation
[1] J.G. Lu, P. Chang, Z. Fan, Mater. Sci. Eng. R 52 (2006) 49. [2] M. Feng, A.L. Pan, H.R. Zhang, et al., Appl. Phys. Lett. 86 (2005) 141901. [3] K. Bange, T. Gambke, Adv. Mater. 2 (1990) 10. [4] J.Y. Luo, F.L. Zhao, L. Gong, et al., Appl. Phys. Lett. 91 (2007) 093124. [5] T. Ohmori, H. Takahashi, H. Mametsuka, E. Suzuki, Phys. Chem. Chem. Phys. 2 (2000) 3519. [6] S. Mitra, S. Das, K. Mandal, S. Chaudhuri, Nanotechnology 18 (2007) 275608. [7] Y. Li, Y. Bando, D. Golberg, Adv. Mater. 15 (2003) 1296. [8] J. Zhou, Y. Ding, S.Z. Deng, L. Gong, N. Xu, Z.L. Wang, Adv. Mater. 17 (2005) 2107. [9] H. Yang, S. Liu, J. Li, M. Li, G. Peng, G. Zou, Nanotechnology 17 (2006) 1519. [10] C. Paracchini, G. Schianchi, Phys. Status. Solidi. (a) 72 (1982) K19. [11] S.Z. Karazhanov, Y. Zhang, A. Mascarenhas, S. Deb, L.W. Wang, Phys. Rev. B 68 (2003) 233204. [12] K. Lee, W.K. Seo, J.T. Park, J. Am. Chem. Soc. 125 (2003) 3409. [13] C. Shi, Y. Wei, X. Yang, D. Zhou, C. Guo, J. Liao, H. Tang, Chem. Phys. Lett. 328 (2000) 1. [14] X.G. Wen, S.H. Wang, Y. Ding, Z.L. Wang, S. Yang, J. Phys. Chem. B 109 (1995) 215. [15] L.A. Marusak, R. Messier, W.B. White, J. Phys. Chem. Solids 41 (1980) 981. [16] D.M. Sherman, T.D. Waite, Am. Mineral. 70 (1985) 1262. [17] Y.P. He, Y.M. Miao, C.R. Li, et al., Phys. Rev. B 71 (2005) 125411. [18] B.S. Zou, V. Volkov, J. Phys. Chem. Solids 261 (2000) 2757. [19] A.A. Akl, Appl. Surf. Sci. 233 (2004) 307. [20] Q. Han, Y.Y. Xu, Y.Y. Fu, et al., Chem. Phys. Lett. 431 (2006) 100. [21] B.S. Zou, W. Huang, M.Y. Han, S. Li, X. Wu, Y. Zhang, J. Zhang, P. Wu, R.J. Wang, Phys. Chem. Sol. 58 (1997) 1315. [22] S. Zeng, K. Tang, T. Li, J. Colloid Interface Sci. 312 (2007) 513. [23] N.J. Cherepy, D.B. Liston, J.A. Lovejoy, H. Deng, J. Zhang, J. Phys. Chem. B 120 (1998) 770.
Collections