Publication:
Symmetric Airy beams

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-04-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Alan E. Willner, University of Southern California
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this Letter a new class of light beam arisen from the symmetrization of the spectral cubic phase of an Airy beam is presented. The symmetric Airy beam exhibits peculiar features. It propagates at initial stages with a single central lobe that autofocuses and then collapses immediately behind the autofocus. Then, the beam splits into two specular off-axis parabolic lobes like those corresponding to two Airy beams accelerating in opposite directions. Its features are analyzed and compared to other kinds of autofocusing beams; the superposition of two conventional Airy beams having opposite accelerations (in rectangular coordinates) and also to the recently demonstrated circular Airy beam (in cylindrical coordinates). The generation of a symmetric Airy beam is experimentally demonstrated as well. Besides, based on its main features, some possible applications are also discussed.
Description
© 2014 Optical Society of America. Financial support from the SENAI-DR/Bahia, Brazil, and the Spanish MEC under project TEC 2011-23629 is acknowledged. P. V. acknowledges a PQ fellowship from CNPq (Brazil).
Keywords
Citation
1. G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007). 2. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007). 3. Y. Kaganovsky and E. Heyman, Opt. Express 18, 8440 (2010). 4. Y. Hu, G. A. Siviloglou, P. Zhang, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, in Nonlinear Photonics and Novel Optical Phenomena, Z. Chen and R. Morandotti, eds., Vol. 170 of Springer Series in Optical Sciences (Springer, 2013), pp. 1–46. 5. M. A. Bandres, I. Kaminer, M. S. Mills, B. M. Rodrguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, Opt. Phot. News 24(6), 30 (2013). 6. N. K. Efremidis and D. N. Christodoulides, Opt. Lett. 35, 4045 (2010). 7. I. D. Chremmos, N. K. Efremidis, and D. N. Christodoulides, Opt. Lett. 36, 1890 (2011). 8. I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, Phys. Rev. A 85, 023828 (2012). 9. D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, Opt. Lett. 36, 1842 (2011). 10. I. D. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, Opt. Lett. 36, 3675 (2011). 11. P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, Nat. Commun. 4, 2622 (2013). 12. Ch.-Y. Hwang, D. Choi, K.-Y. Kim, and B. Lee, Opt. Express 18, 23504 (2010). 13. All the equations are given for one transverse dimension. However, the extension to two transverse dimensions is straightforward because of the rectangular symmetry. 14. I. M. Besieris and A. M. Shaarawi, Opt. Lett. 32, 2447 (2007). 15. P. Vaveliuk and O. Martinez Matos, Opt. Express 20, 26913 (2012). 16. J. Kasparian and J.-P. Wolf, J. Eur. Opt. Soc. (Rapid Publications) 4, 09039 (2009). 17. A. Salandrino and D. N. Christodoulides, Physics 4, 69 (2011). 18. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, Appl. Opt. 38, 5004 (1999). 19. J. A. Rodrigo, T. Alieva, A. Cámara, O. Martínez-Matos, P. Cheben, and M. L. Calvo, Opt. Express 19, 6064 (2011).
Collections