Publication:
Two-layer Hall effect model for intermediate band Ti-implanted silicon

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-03-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Si samples have been implanted with very high Ti doses (over the theoretical Mott limit) to obtain an intermediate band (IB) in the host semiconductor. The electronic transport properties of this material have been analyzed by temperature-dependent sheet resistance and Hall effect measurements in the 7-400 K range. The experimental results are successfully explained by means of an analytical two-layer model, in which the implanted layer and the substrate behave as an IB/n-Si type junction. We deduce that the IB is located at 0.38 eV below the conduction band, which is around one third of the Si bandgap, i.e., theoretically close to the optimum location for an IB. Finally, we obtain that carriers at the IB behave as holes with a mobility of 0.4-0.6 cm(2) V(-1) s(-1). This extremely low mobility is the one expected for a semifilled, metallic band, being this metallic condition of the IB a requirement for IB solar cells.
Description
© 2011 American Institute of Physics. The authors would like to acknowledge C. A. I. de Técnicas Físicas of the Universidad Complutense de Madrid for ion implantation experiments. This work was partially supported by the Projects NUMANCIA-2 (S/2009/ ENE-1477) funded by the Comunidad de Madrid and GENESIS-FV (CSD2006-00004) funded by the Spanish Consolider National Program and by the Grants (CCG07-UCM/TIC-2804), and (GR58/08) funded by U.C.M.-C.A.M.-B.S.C.H.
Unesco subjects
Keywords
Citation
1) A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997). 2) A. Luque, A. Martí, E. Antolín, and C. Tablero, Physica B 382, 320 (2006). 3) K. M. Yu, W. Walukiewicz, O. D. Dubon, J. Jasinski, Z. Liliental-Weber, J. Wu, J. W. Beeman, M. R. Pillai, and M. J. Aziz, J. Appl. Phys. 94, 1043 (2003). 4) D. C. Look, J. Appl. Phys. 104, 063718 (2008). 5) D. C. Look, D. C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones, and R. J. Molnar, Phys. Rev. Lett. 79, 2273 (1997). 6) A. Martí, D. Fuertes Marrón, and A. Luque, J. Appl. Phys. 103, 073706 (2008). 7) M. Ley, J. Boudaden, and Z. T. Kuznicki, J. Appl. Phys. 98, 044905 (2005). 8) G. González-Díaz, J. Olea, I.Mártil, D. Pastor, A. Martí, E. Antolín, and A Luque, Sol. Energy Mater. Sol. Cells 93, 1668 (2009). 9) J. Olea, G. González Díaz, D. Pastor, and I. Mártil, J. Phys. D: Appl. Phys. 42, 085110 (2009). 10) ATLAS, Device Simulator Framewok distributed by Silvaco Data Systems Inc., 4701, Patrick Henry Drive, Bldg#6, Santa Clara, CA 95054 (2008). 11) K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, Phys. Rev. B 79, 165203 (2009). 12) C. W. White, S. R. Wilson, B. R. Appleton, and F. W. Young, Jr., J. Appl. Phys. 51, 738 (1980). 13) C. W. White, J. Narayan, and R. T. Young, Science 204, 461 (1979). 14) D. Mathiot and D. Barbier, J. Appl. Phys. 69, 3878 (1991). 15) J. Olea, M. Toledano-Luque, D. Pastor, G. González-Díaz, and I. Mártil, J. Appl. Phys. 104, 016105 (2008). 16) E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, Appl. Phys. Lett. 94, 042115 (2009). 17) J. Olea, M. Toledano-Luque, D. Pastor, E. San-Andrés, I. Mártil, and G. González-Díaz, J. Appl. Phys. 107, 103524 (2010). 18) S. Liu, K. Karrai, F. Dunmore, H. D. Drew, R. Wilson, and G. A. Thomas, Phys. Rev. B 48, 11394 (1993). 19) L. Cuadra, A. Martí, and A. Luque, Thin Solid Films 451–452, 593 (2004). 20) R. L. Petritz, Phys. Rev. 110, 1254 (1958). 21) A. Aldea, Phys. Status Solidi (b) 22, 377 (1967). 22) PSPICE, Cadence Design Systems Inc., 2655 Seely Avenue, San Jose, CA 95134 (2000). 23) D.W. Koon, Rev. Sci. Instrum. 77, 094703 (2006).
Collections