Publication:
Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-01-26
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Inst Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The doping of conventional semiconductors with deep level (DL) centers has been proposed to synthesize intermediate band materials. A recent fundamental study of the nonradiative recombination (NRR) mechanisms predicts the suppression of the NRR for ultrahigh DL dilutions as a result of the delocalization of the impurity electron wave functions. Carrier lifetime measurements on Si wafers doped with Ti in the 10(20)-10(21) cm(-3) concentration range show an increase in the lifetime, in agreement with the NRR suppression predicted and contrary to the classic understanding of DL action.
Description
© 2009 American Institute of Physics. This work has been supported by the project FULL SPECTRUM (Grant No. SES6-CT-2003-502620) funded by the European Commission, by the Regional Government of Madrid within the project NUMANCIA (Grant No. S-0505/ENE/000310), and by the Spanish National Research Program within the project GENESIS-FV (Grant No. CSD2006-0004).
Unesco subjects
Keywords
Citation
1) F. Seitz, Trans. Faraday Soc. 35, 74 (1939). 2) W. Shockley and W. T. Read, Phys. Rev. 87, 835 (1952). 3) R. N. Hall, Phys. Rev. 87, 387 (1952). 4) A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997). 5) A. Martí, L. Cuadra, and A. Luque, in Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization, edited by A. Martí and A. Luque (Institute of Physics Publishing, Bristol, 2003), pp. 140–162. 6) A. Martí, L. Cuadra, and A. Luque, Conference Record of the 28th IEEE Photovoltaics Specialists Conference, 2000(unpublished), pp. 940–943. 7) W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, I. Miotkowski, M. J. Seong, H. Alawadhi, and A. K. Ramdas, Phys. Rev. Lett. 85, 1552 (2000). 8) A. Luque, A. Martí, E. Antolín, and C. Tablero, Physica B 382, 320 (2006). 9) P. W. Anderson, Phys. Rev. 109, 1492 (1958). 10) N. F. Mott, Rev. Mod. Phys. 40, 677 (1968). 11) A. Rohatgi, J. R. Davis, R. H. Hopkins, P. Rai-Choudhury, P. G. McMullin, and J. R. McCormick, Solid-State Electron. 23, 415 (1980). 12) S. Hocine and D. Mathiot, Appl. Phys. Lett. 53, 1269 (1988). 13) D. Mathiot and D. Barbier, J. Appl. Phys. 69, 3878 (1991). 14) C. W. White, S. R. Wilson, B. R. Appleton, and F. W. Young, Jr., J. Appl. Phys. 51, 738 (1980). 15) J. Narayan, C. W. White, M. J. Aziz, B. Strizker, and A. Walthuis, J. Appl. Phys. 57, 564 (1985). 16) J. Olea, M. Toledano-Luque, D. Pastor, G. González-Díaz, and I. Mártil, J. Appl. Phys. 104, 016105 (2008). 17) R. A. Sinton and A. Cuevas, Appl. Phys. Lett. 69, 2510 (1996). 18) R. Lago-Aurrekoetxea, I. Tobías, C. del Cañizo, and A. Luque, J. Electrochem. Soc. 148, G200 (2001). 19) R. A. Sinton and R. M. Swanson, IEEE Trans. Electron Devices 34, 1380 (1987).
Collections