Influence of interlayer trapping and detrapping mechanisms on the electrical characterization of hafnium oxide/silicon nitride stacks on silicon

Citation: Journal of Applied Physics 104, 094107 (2008); doi: 10.1063/1.3013441

View online: http://dx.doi.org/10.1063/1.3013441

View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/104/9?ver=pdfcov

Published by the AIP Publishing
Influence of interlayer trapping and detrapping mechanisms on the electrical characterization of hafnium oxide/silicon nitride stacks on silicon

H. García,1,a S. Dueñas,1,b H. Castán,1 A. Gómez,1 L. Bailón,1 M. Toledano-Luque,2 A. del Prado,2 I. Mártil,2 and G. González-Díaz2

1Departamento de Electricidad y Electrónica, E.T.S.I. Telecomunicación, Universidad de Valladolid, Campus “Miguel Delibes,” 47011 Valladolid, Spain
2Departamento de Física Aplicada III (Electricidad y Electrónica), Facultad de Ciencias Físicas, Universidad Complutense, 28040 Madrid, Spain

(Received 9 August 2008; accepted 19 September 2008; published online 12 November 2008)

Al/HfO2/SiNx:H/n-Si metal-insulator-semiconductor capacitors have been studied by electrical characterization. Films of silicon nitride were directly grown on n-type silicon substrates by electron cyclotron resonance assisted chemical vapor deposition. Silicon nitride thickness was varied from 3 to 6.6 nm. Afterwards, 12 nm thick hafnium oxide films were deposited by the high-pressure sputtering approach. Interface quality was determined by using current-voltage, capacitance-voltage, deep-level transient spectroscopy (DLTS), conductance transients, and flatband voltage transient techniques. Leakage currents followed the Poole–Frenkel emission model in all cases. According to the simultaneous measurement of the high and low frequency capacitance voltage curves, the interface trap density obtained for all the samples is in the 1011 cm−2 eV−1 range. However, a significant increase in this density of about two orders of magnitude was obtained by DLTS for the thinnest silicon nitride interfacial layers. In this work we probe that this increase is an artifact that must be attributed to traps existing at the HfO2/SiNx:H intralayer interface. These traps are more easily charged or discharged as this interface comes near to the substrate, that is, as thinner the SiNx:H interface layer is. The trapping/detrapping mechanism increases the capacitance transient and, in consequence, the DLTS measurements have contributions not only from the insulator/substrate interface but also from the HfO2/SiNx:H intralayer interface.

I. INTRODUCTION

High permittivity (high-κ) dielectrics are nowadays being subject of great study in order to replace SiO2 as gate dielectric in metal-oxide-semiconductor field-effect transistors in the future scales of integration.1,2 To achieve performance comparable to silicon oxide, high-κ dielectrics have to fulfill some requirements: high quality interface with Si, thermodynamic stability in contact with Si, high recrystallization temperature, high bandgap, and lower leakage conductance than silicon oxide at an equivalent oxide thickness. HfO2-based materials are among the most promising of such materials.1–3

However, before these materials can replace SiO2 as gate dielectric, the nature and formation of electrically active defects existing in these emerging materials should be known. These defects play an important role in device operation: They can cause channel mobility degradation, bias instability,4 and leakage current increase.5 Defects in SiO2 are passivated by hydrogen, but this can cause some problems in HfO2.5 Moreover, as most of the high-κ materials, when deposited in direct contact with Si an interfacial layer (few nanometers thick) is formed.6 We have confirmed, in an earlier work, the formation of silicon oxide (SiOx) as interfacial layer when depositing HfO2 on Si.8 This noncontrolled interfacial layer can increase interfacial state density Dfi and leakage current. A general practice has been to grow a controlled free-defect SiO2 barrier layer between substrate and high-κ dielectric, thick enough to avoid reaction. Unfortunately, this barrier layer leads to a reduction of the dielectric constant and, hence, to the effective capacitance of the gate dielectric stack, impeding to reach the necessary equivalent oxide thickness (EOT) values. The use of silicon nitride instead of silicon oxide as a barrier layer can improve the effective capacitance of the gate dielectric stack, since silicon nitride has a higher permittivity (κSi3N4 ~ 7) than silicon oxide (κSiO2 ~ 3.9). Moreover, SiNx layer prevents the growth of silicon oxides when high-κ dielectric is deposited and it is known that the use of nitrides greatly reduces boron diffusion from the heavily doped poly-Si gate electrode to the lightly doped Si channel.9

This work presents an electrical study of Al/HfO2/SiNx:H/n-Si metal-insulator-semiconductor (MIS) structures. Hafnium oxide was grown by high-pressure sputtering (HPS) (Ref. 10) using Ar as processing gas, while silicon nitride was grown by electron cyclotron resonance–chemical vapor deposition (ECR-CVD), using SiH4 and N2 as precursors. We have studied the effect of SiNx:H thickness in the electrical characteristics while keeping HfO2 thickness constant at 12 nm. Besides silicon nitride thickness effect, another important subject to study is the thermal annealing effects on the characteristics of dielectric films, since high-temperature anneals are generally used in chip technol-

aElectronic mail: hecgar@ele.uva.es.

bElectronic mail: sduenas@ele.uva.es.
After the dielectric deposition, aluminum was evaporated through a shadow mask. Table I lists the samples obtained for electrical characterization.

II. EXPERIMENTAL

MIS structures were obtained as follows: Substrates used were n-type (polished on one side, 5 Ω cm resistivity, and 500 μm thick). Before the dielectric films were deposited on the substrates, these were submitted to a standard Radio Corporation of America cleaning. Deposition of silicon nitride was conducted in a homemade chamber attached to an ECR Astex 4500 reactor. A mixture of high purity silane (SiH₄) and N₂ was used as precursors. Deposition times were 90, 60, 30, and 15 s giving rise to four different thicknesses (6.6, 5.9, 3.9, and 3 nm, respectively). Two series were obtained for each thickness, being one of them submitted to a RTA in argon at 600 °C for 30 s. Afterwards, 12 nm HfO₂ films were grown in a HPS system at pressure of 1.2 mbars during 30 min, keeping the temperature at 200 °C. High and low frequency capacitance-voltage (HLCV), conductance transients (G-t), and constant-capacitance flat-band voltage transients (V_{FB}-t).

The structures were characterized by means of Fourier transformed infrared (FTIR) spectroscopy using a Nicolet Magna-IR 750 series II spectrometer working in transmission mode at normal incidence, and by cross section transmission electron microscopy (TEM) with a JEOL-JEM-2000FX microscope operating at 200 kV.

Electrical measurements were carried out by means of electrical characterization. Of that, we have also compared the electrical properties of as-deposited films with those corresponding to samples submitted to rapid thermal annealing (RTA). Techniques used to study MIS structures were current-voltage (I-V), 1 MHz capacitance-voltage (C-V), deep-level transient spectroscopy (DLTS), simultaneous high and low frequency capacitance-voltage (HLCV), conductance transients (G-t), and constant-capacitance flat-band voltage transients (V_{FB}-t).

To determine the interface trap density we used DLTS and HLCV in order to contrast the results obtained by these two different techniques. DLTS measurements were carried out using the Boonton 72B capacitance meter, an HP 54501A digitizing oscilloscope to record the complete conductance transients. An Agilent N6700B bias source, a Keithley 6517A electrometer, and a Boonton 72B capacitance meter were used for recording flat-band voltage transients at constant capacitance.

Finally, the I-V curves were measured biasing the samples with an Agilent N6700B and measuring the current with a Keithley 6517A programmable electrometer.

III. RESULTS AND DISCUSSION

A. Structure and composition of the films

The FTIR spectra of the SiNₓ:H thin film, and the HfO₂/SiNₓ:H stacked structure obtained after HfO₂ deposition in Ar atmosphere are shown in Fig. 1. The FTIR spectrum of the SiNₓ:H layer has the characteristic Si–N stretching band located at 844 cm⁻¹. After the HfO₂ deposition, a smooth shoulderlike feature appears at about 11018 cm⁻¹, slightly above the frequency corresponding to the Si–O–Hf configuration (970 cm⁻¹). We tentatively attribute this band to the vibration of bonding groups involving Si, O, N, and Hf, which may be formed at the HfO₂/SiN interface in small concentration.

In Fig. 2, a TEM image of a typical structure in which SiNₓ:H film has a 2.9 nm thickness is shown. From the figure, a smooth surface topography can be observed. Also...
well defined SiN$_x$:H/Si and HfO$_2$/SiN$_x$:H interfaces can be clearly seen. The TEM image shows that the SiN$_x$:H film is unaltered after the deposition of the amorphous HfO$_2$ film in Ar plasma.

B. Electrical measurements

Figure 3 shows 1 MHz C-V curves measured at room temperature for as-deposited samples [Fig. 1(a)] and for annealed samples [Fig. 1(b)]. Theoretical flatband voltage for Al/HfO$_2$/SiN$_x$:H/n-Si structures is about -0.3 eV. The thinnest sample exhibits flatband voltages close to the theoretical value, but as silicon nitride layer thickness increases, flatband voltage shifts toward more negative values, so positive charge is accumulating in the dielectric film. This positive charge can be due to hydrogen that comes from silane precursor: As SiN$_x$ thickness increases, more hydrogen can be accumulated in the film increasing the voltage shift.

Samples corresponding to the two thickest dielectric films show clockwise hysteresis (both as deposited and annealed). This fact indicates that there are slow states in dielectric films, i.e., defects distributed away from the interface to the insulator, called disordered induced gap states (DIGS). We can obtain a three-dimensional plot of DIGS density as a function of energy position and spatial position by measuring conductance transients (G-t). DIGS density values are listed in Table II, which also shows other electrical characterization results. Conductance transients have only been observed in films that show hysteresis phenomena. DIGS density increases in higher in 5.84 nm thick samples than in 6.64 nm thick ones (both in as-deposited and in annealed samples). However, no conductance transients were observed in the thinnest samples. Figure 4 shows the contour plot of DIGS, corresponding to Asd$_2$ sample, as a function of distance to substrate interface (X_t) and of energetic position, being $E_T-E_{C_{Si}}$ the energy position of the traps with respect to the silicon band edge. The energetic position of DIGS is similar in all measured samples. When recording a conductance transient, capture processes take place in which the empty DIGS trap electrons (n-Si substrate here) coming by tunneling from the semiconductor conduction band. States near the insulator/semiconductor interface capture carriers before those located deeper in the dielectric. DIGS located very close to SiN$_x$:H/n-Si interface have capture times much lower than our experimental constant time and cannot be recorded. That is the reason why the contour plots show DIGS densities for states located at distances higher than 1.7 nm from the interface. In Fig. 4 we also observe that the DIGS distribution has a maximum at a depth of about 1.9–2.0 nm, which is close to the SiN$_x$:H thickness in the two thinnest samples. For these samples, we suggest that this region is very influenced by the presence of the interface with the HfO$_2$ layer and the states existing at this interface are predominant and, in consequence, no slow-trap related conductance transients are recorded. DIGS density increases when samples are submitted to a rapid thermal annealing suggesting that annealing creates more traps in the silicon nitride bulk.

We have also measured flatband voltage transients (V_{FB} $-t$). These transients are recorded by keeping constant the capacitance at flatband condition. Flatband transients are related to the hysteresis behavior, as conductance transients. In fact, these transients give information about phonon-assisted tunneling mechanisms between localized states in the bandgap of the insulator. As expected, transient amplitude is bigger in samples, which show hysteresis phenomena. In

Figure 2: Cross sectional image of a HfO$_2$/SiN$_x$:H structure. SiN$_x$:H thickness is 2.9 nm.

Figure 3: 1 MHz C-V curves measured at room temperature corresponding to as-deposited samples (a) and to RTA samples (b).
Table II, we can see the amplitude values of these transients. Measurements have been carried out at room temperature (295 K), biasing the samples in inversion regime (negative bias) as initial condition before starting the measurement. Figure 5 shows normalized flatband voltage transients corresponding to the two thickest samples (both as deposited and rapid thermal annealed). In all cases, we can see ascending transients (flatband voltage increasing with time), in good agreement with the clockwise hysteresis observed in C-V curves and the initial bias (inversion). Annealed samples show bigger flatband transients than as-deposited ones, in agreement with G-t measurements: As it has been said before, when samples are submitted to RTA, conductance transient amplitude increases, so DIGS density also increases.

Interface state densities \(D_{it} \) measured by DLTS are shown in Fig. 6. These results have been divided into two different groups: the one corresponding to the two thickest samples shows the lowest \(D_{it} \) density (from \(8 \times 10^{10} \) to \(4 \times 10^{11} \) cm\(^{-2}\) eV\(^{-1}\)), and the other corresponding to the two thinnest samples exhibits the highest \(D_{it} \) density (from \(6 \times 10^{12} \) to \(2 \times 10^{13} \) cm\(^{-2}\) eV\(^{-1}\)). The interface trap density was also determined by means of the simultaneous measurement of the HLCV curves. The values obtained are shown in Table II and are in the \(10^{11} \) eV\(^{-1}\) cm\(^{-2}\) range for all the samples. It is clear that there are noticeable differences between these two techniques. We attribute these discrepancies so that the traps existing at \(\text{HfO}_2/\text{Si}_3\text{N}_4/\text{H} \) interface can charge or discharge more easily as this interface comes near the substrate. When considering the particular values of bandgap, and conduction and valence band offsets of \(\text{HfO}_2 \) and \(\text{Si}_3\text{N}_4 \), the energy band diagrams of the \(\text{HfO}_2/\text{Si}_3\text{N}_4/\text{n-Si} \) system under accumulation and inversion regimes are like those shown in Fig. 7. In this figure we observe that, at inversion, two-dimensional energy wells appear both for electrons (e-well) and holes (h-well) at the \(\text{HfO}_2/\text{Si}_3\text{N}_4 \) interface. This band energy structure remembers the typical one for a floating gate memory, being \(\text{HfO}_2 \) the blocking oxide (for holes), silicon nitride the tunneling film, and the interface between them would act as a two-dimensional charge trapping layer. Therefore, some charge can be trapped in the wells that screen the charge at the insulator-gate/semiconductor interface \(Q_{it} \). Depending on the balance between positive and negative charge amounts trapped at these wells, the charge at the metal electrode will be higher or lower than that induced by \(Q_{it} \). When the positive charge at the h-well is higher than the negative one at the e-well, the total (negative) charge at the gate electrode, \(Q_G \), is higher than the corresponding for only \(Q_{it} \). On the contrary, when negative charge at the e-well prevails, \(Q_G \) is lowered. According to the energy band diagram of Fig. 7, charges at the e-well consist of electrons coming by tunneling from the gate electrode, whereas the h-well consists of

![FIG. 4. Contour plot of DIGS density obtained from Asd_2 sample.](image-url)

![FIG. 5. Normalized flatband voltage transients measured at room temperature (295 K). Samples initially biased in inversion regime.](image-url)
holes coming from the semiconductor substrate also by tun-
neling. Since tunneling probability depends on the corre-
sponding barrier thickness, we can conclude that as thinner
the Si$_3$N$_4$ or as thicker the HfO$_2$ layers as more negative the
value of Q_G.

In our experiment we kept constant the HfO$_2$ thickness,
so the e-well trapped charge is the same for all the samples.
On the contrary, the Si$_3$N$_4$ layer thickness has been varied
so the Q_G value of

$$Q_G = \frac{-0.15}{2} \text{ eV/cm}$$

from around 3 to 6.6 nm. To estimate the relationship be-

between the tunneling charging/discharging probabilities be-

 tween t_1 and t_2, we can use the following quantum mechanics expression:

$$p_1 \over p_2 = \exp \left[\frac{2 \pi \sqrt{2 m_h \varphi_v (t_1 - t_2)}}{h} \right],$$

where m_h is the hole effective mass inside the barrier, φ_v is
the mean barrier height, t_1 and t_2 are the barrier thicknesses,
and h is Planck's constant. For the h-well triangular barrier

$$\varphi_v = \Delta E_V/2,$$

where ΔE_V is the valence band offset of silicon nitride relative to silicon. Gritsenko and Meerson21 reported
values of $\Delta E_V \approx 1.5$ eV and $m_b/m_0 = (0.3 \pm 0.1)$. Here m_0
is the free electron mass. These values yield a relation of
$p_1/p_2 = 10^{-4}$ for two layers of 6 and 3 nm, respectively, so
indicating that the “memory effect” of the thicker layer is
negligible for thicker samples. However, that is not the case
for the thinnest ones, increasing the total charge variation at
the gate electrode. In summary, we can conclude that inter-
face states densities obtained by DLTS in the specific case of
the HfO$_2$/SiN$_x$/H/Si system provide underestimated D_i
values for very thin silicon nitride layers. A detailed revision of
the DLTS formulation must be done for this case, which lies
outside the scope of this paper.

From the results obtained by the HLCV method we ob-
serve that RTA slightly increases D_i density in the samples.
No crystallization of silicon nitride is expected at this anneal-
ing temperature (600 °C) 22,23 and even in Al/SiN$_x$/H/Si
structures, interface state density decreases when a RTA is
applied to the samples. 24 Anyway, these values are lower
than those we obtained in an earlier work8 where we used a
SiO$_2$ barrier layer instead of SiN$_x$/H. In that case we
obtained D_i values of about 3×10^{11} cm$^{-2}$ eV$^{-1}$ slightly higher
than that obtained here for silicon nitride layers thick
enough.

Figure 8 shows the electric field values corresponding to
5.88 mA/cm2 current density as a function of temperature.

$$E = \frac{(V_G - V_{FB} - \Psi_S)}{t_{HfO_2} + t_{SiN_4,H}}$$

As current density is measured in accumulation, surface po-
tential Ψ_S is negligible. There is a clear relation between C-V
curves and conduction behavior: Samples that show low flat-

![Fig. 6. Interfacial state density measured by DLTS.](image)

![Fig. 7. Energy band diagram of the HfO$_2$/SiN$_x$/H/Si MIS structure at inversion.](image)

![Fig. 8. Average electric field values corresponding to 5.88 mA cm$^{-2}$ current density as a function of temperature.](image)
band voltage shifts provide higher currents. Leakage current should be limited by HfO$_2$, since at positive bias the conduction is controlled by the metal-oxide interface. Hafnium oxide thickness is the same for all the films (12 nm), but the thinnest dielectric films show the highest leakage current. However, as silicon nitride layer thickness decreases the real electric field in hafnium oxide increases and becomes higher than the effective electric field, so the real differences in the samples should be less than the ones displayed. These results are also an improvement with respect to the case in which the silicon nitride barrier layer was not used.

In that case the current densities were higher: Electric field value was 0.55 MV cm$^{-1}$ for a 2.5 mA/cm2 current density in a sample in which an 11 nm thick HfO$_2$ was directly deposited on n-Si. Moreover, in this last sample, a noncontrolled 3.63 nm thick SiO$_2$ film was formed during high-k dielectric growth and the EOT was higher than for all the samples grown here. The lower leakage currents and the higher EOT values prove the utility of the silicon nitride barrier layer.

Figure 9(a) shows the current-temperature dependence for the samples Asd$_2$ and RTA$_2$. The relationship between ln(I) and 1000/T is clearly linear in the range 200–300 K. This linear behavior indicates a conduction mechanism controlled by the Poole–Frenkel (PF) model. The PF mechanism is bulk limited, depends on insulator traps, and is associated with the field-enhanced thermal excitation of charge carriers from traps. If the slope of the lines does not vary with the applied field, this indicates that the conduction takes place through an activated process having single activation energy, ΔE_r, following the relation

$$ I = I_0 \exp\left(-\frac{\Delta E_r}{kT}\right) $$

The activation energy values corresponding to all the measured samples are listed in Table II. Values obtained are similar in all the samples, but as silicon nitride thickness increases, activation energy values slightly increase (from 71.19 to 90.80 meV) and these values move away from the value earlier obtained in Al/HfO$_2$/n-Si structure (50 meV).

It is known that the relationship between the current and the electric field in PF conduction mechanism is

$$ I = CE \exp\left(\frac{\beta_{PF} \sqrt{E - q\phi_T}}{kT}\right), $$

where C is a constant related to the density of ionized traps and carrier mobility, β_{PF} is the barrier lowering coefficient for PF emission, and ϕ_T is the ionization energy of the trap level. Figure 9(b) shows the plot of I/E (in logarithmic scale) against $E^{1/2}$ at several temperatures for the Asd$_2$ sample. The dependence is clearly linear, as required by the PF mechanism. The obtained values of the barrier lowering coefficient, β_{PF}, are similar for all the temperatures. The values of β_{PF} at room temperature corresponding to all the measured samples are listed in Table II. PF field lowering coefficient is given by

$$ \beta_{PF} = \sqrt{\frac{e^3}{\pi\varepsilon_0 k}}, $$

where the optical frequency dielectric constant k should be used in this equation 29 ($k \sim n^2$, with n the refractive index of the dielectric material). Refractive index for HfO$_2$ ranges from 1.7 to 1.9, 29 so the theoretical dielectric constant of HfO$_2$ at optical frequencies is about 3.6. We have also included dielectric constant at optical frequencies obtained from our measurements in Table II. Although the good fit of PF plots, β_{PF}, is not constant for all the samples, values corresponding to Asd$_2$ (2.75) and Asd$_3$ (2.94) samples (Asd$_1$ sample has not been measured, but it is to be expected the same behavior) approach the theoretical HfO$_2$ value. Silicon nitride layer can be responsible for the lower values obtained compared to the theoretical value. However, when samples are submitted to RTA or when the silicon nitride thickness is the smallest (2.96 nm), dielectric constant does not agree with the theoretical value at all. It seems that when samples are submitted to RTA before high-k deposition, reactions between both dielectrics are promoted, so HfO$_2$ properties move away from its theoretical properties. If the silicon nitride layer is too thin, the interface with the substrate cannot completely keep its quality. When HfO$_2$ was deposited directly on n-Si substrate, we have found that the dielectric constant at optical frequencies is about 0.43. In that case, a SiO$_2$ layer is nonintentionally obtained between
HfO$_2$ and silicon substrate. Silicon nitride barrier layer can prevent some reaction between hafnium oxide and substrate, at least, when no RTA is applied and its thickness is big enough.

IV. SUMMARY

The electrical characteristics of Al/HfO$_2$/Si$_3$N$_4$/H/n-Si MIS capacitors have been studied. HfO$_2$ was grown by HPS, while silicon nitride was grown by ECR-CVD. Samples with thicker silicon nitride dielectric layer show larger flatband voltage transients, but this can be due to hydrogen accumulated in the film. Digs density is also bigger in the thickest samples, as we have measured by conductance transients and by flatband voltage shifts, which can be due to hydrogen accumulated in the film. Digs density is also bigger in the thickest samples, as we have measured by conductance transients and by flatband voltage transients, but this can be due to our measurement range: If these defects are close to dielectric/semiconductor interface, they exchange charge with substrate fast enough not to be detected by our measurements. We have experimentally observed that DLTS provides overestimated values for very thin silicon nitride layers in the specific case of the HfO$_2$/Si$_3$N$_4$/H/Si system. That is due to the big amount of charge trapped at the hole well, which is formed in the valence band at the hafnium oxide–silicon nitride interface. Leakage current dependencies on voltage and temperature followed the PF conduction mechanism. The optical frequency dielectric constant only fits with the theoretical value in the case of the as-deposited films. When samples are submitted to RTA, some electrical characteristics changed: D_H does not vary significantly, but Digs density is higher and the optical frequency dielectric constant does not fit with the theoretical value at all. From all of these measurements, it seems that if silicon nitride layer is not thick enough, reactions of the HfO$_2$ layer with silicon substrate cannot be avoided. Moreover, the RTA applied to the silicon nitride before the high-k growth seems to promote the reaction between both dielectrics, so slow state density inside the dielectric is bigger and dielectric constant measured does not fit with theoretical values. However, the electrical characteristics can be improved if we compare these results with those of Al/HfO$_2$/Si structures.

ACKNOWLEDGMENTS

The study was partially supported by the local government (Junta de Castilla y León) under Grant No. VA018A06, and by the Spanish TEC2008 under Grant No. 06698-C02-02 and TEC2007 under Grant No. 63318. The authors acknowledge C. A. I. de Técnicas Fisicas, C. A. I. de Espectroscopía y Espectrometría, and C. A. I. de Microscopía y Citometría of the Universidad Complutense de Madrid for technical support.