Publication:
Cathodoluminescence microscopy and spectroscopy of GaN epilayers microstructured using surface charge lithography

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2006-07-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Cathodoluminescence (CL) microscopy and spectroscopy have been used to investigate the optical properties of GaN microstructures patterned by Ar+ ion irradiation and subsequent photoelectrochemical (PEC) etching. Monochromatic CL images and CL spectra reveal an enhancement of several defect-related emission bands in a 10 mu m wide area around each microstructure. In addition, columnar nanostructures and nanoetch pits were found in the PEC etched areas. CL emission of the nanocolumns is dominated by free electron to acceptor transitions, while excitonic luminescence prevails in the rest of the etched GaN layers. Investigation of the sidewalls of the microstructures reveals that a CL emission band centered at about 3.41 eV, attributed to excitons bound to structural defects, is effectively suppressed after PEC etching only in the observed nanocolumns.
Description
© 2006 American Institute of Physics. This work has been supported by MEC through Project No. MAT2003-00455, CAM through Project GR/MAT 630-04, U.S. Civilian Research and Development Foundation under Grant Nos. MR2-995 and MOR2-1033-CH-03, as well as by the Supreme Council for Research and Technological Development of Moldova.
Unesco subjects
Keywords
Citation
1. C. Youtsey, I. Adesida, and G. Bulman, Appl. Phys. Lett. 71, 2151 (1997). 2. C. Youtsey, L. T. Romano, and I. Adesida, Appl. Phys. Lett. 73, 797 (1998). 3. A. R. Stonas, P. Kozodoy, H. Marchand, P. Fini, S. P. DenBaars, U. K. Mishra, and E. L. Hu, Appl. Phys. Lett. 77, 2610 (2000). 4. A. R. Stonas, T. Margalith, S. P. DenBaars, L. A. Coldren, and E. L. Hu, Appl. Phys. Lett. 78, 1945 2001 . 5. C. Díaz-Guerra, J. Piqueras, V. Popa, A. Cojocaru, and I. M. Tiginyanu, Appl. Phys. Lett. 86, 223103 (2005). 6. A. Yamamoto and S. Yano, J. Electrochem. Soc. 122, 260 (1975). 7. A. Yamamoto, S. Thono, and C. Uemura, J. Electrochem. Soc. 128, 1095 (1981). 8. G. C. Chi, F. W. Ostermayer, K. D. Cummings, and L. R. Harriot, J. Appl. Phys. 60, 4012 (1986). 9. K. D. Cummings, L. R. Harriot, G. C. Chi, and F. W. Ostermayer, Appl. Phys. Lett. 48, 659 (1986). 10. I. M. Tiginyanu, V. Popa, and O. Volciuc, Appl. Phys. Lett. 86, 174102 (2005). 11. M. A. Reshchikov, H. Morkoç, S. S. Park, and K. Y. Lee, Appl. Phys. Lett. 78, 2882 82001 9. 12. C. Díaz-Guerra, J. Piqueras, and A. Cavallini, Appl. Phys. Lett. 82, 2050 (2003). 13. M. A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005), and references therein. 14. M. Leroux, N. Greandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, J. Appl. Phys. 86, 3721 (1999). 15. M. A. Reshchikov, D. Huang, F. Yun, L. He, H. Morkoç, D. C. Reynolds, S. S. Park, and K. Y. Lee, Appl. Phys. Lett. 79, 3779 82001 9. 16 . F. Calle, F. J. Sánchez, J. M. G. Tijero, M. A. Sánchez-García, E. Calleja, and R. Beresford, Semicond. Sci. Technol. 12, 1396 81997 9. 17. G. Martínez-Criado, C. R. Miskys, A. Cros, O. Ambacher, A. Cantarero, and M. Stutzman, J. Appl. Phys. 90, 5627 82001 9. 18. D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, R. E. Sherriff, and R. J. Molnar, J. Appl. Phys. 88, 1460 (2000). 19. C. Kisielowski et al., Phys. Rev. B 54, 17745 (1996). 20. K. S. A. Butcher, P. Afifuddin, T. L. Tansley, N. Brack, P. J. Pigram, H. Timmers, K. E. Princed, and R. G. Elliman, Appl. Surf. Sci. 230, 18 (2004). 21. J. Y. Chen, C. J. Pan, and G. C. Chi, Solid-State Electron. 43, 649 (1999). 22. R. Cheung, R. J. Reeves, S. A. Brown, E. van der Drift, and M. Kamp, J. Appl. Phys. 88, 7110 (2000). 23. J. F. Ziegler and J. P. Biersack, Stopping and Range of Ions into Matter (SRIM) software. http://www.srim.org/ 24. E. D. Haberer, C. H. Chen, A. Abare, M. Hansen, S. DenBaars, L. Coldren, U. Mishra, and E. L. Hu, Appl. Phys. Lett. 76, 3941 (2000). 25. E. D. Haberer, C. H. Chen, M. Hansen, S. Keller, S. DenBaars, L. Coldren, U. K. Mishra, and E. L. Hu, J. Vac. Sci. Technol. B 19, 603 (20019. 26. R. Khare and E. Hu, J. Appl. Phys. 72, 1543 (1992). 27. E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, Phys. Rev. B 62, 16826 (2000). 28. C. Trager-Cowan, S. McArthur, P. G. Middleton, K. P. O’Donnell, D. Zubia, and S. D. Hersee, MRS Internet J. Nitride Semicond. Res. 3, 36 (1998). 29. S. Fisher et al., J. Cryst. Growth 189–190, 556 (19989. 30. M. A. Reschikov, D. Huang, F. Yun, H. Morkoç, R. J. Molnar, and C. W. Litton, Mater. Res. Soc. Symp. Proc. 693, I6.28 (2002).
Collections