Publication:
Compositional analysis of polycrystalline hafnium oxide thin films by heavy-ion elastic recoil detection analysis

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2006-10-25
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science SA
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The composition of polycrystalline hafnium oxide thin films has been measured by heavy-ion elastic recoil detection analysis (HI-ERDA). The films were deposited by high-pressure reactive sputtering (HPRS) on silicon wafers using an oxygen plasma at pressures between 0.8 and 1.6 mbar and during deposition times between 0.5 and 3.0 h. Hydrogen was found to be the main impurity and its concentration increased with deposition pressure. The composition was always slightly oxygen-rich, which is attributed to the oxygen plasma. Additionally, an interfacial silicon oxide thin layer was detected and taken into account. The thickness of the hafnium oxide film was found to increase linearly with deposition time and to decrease exponentially with deposition pressure, whereas the thickness of the silicon oxide interfacial layer has a minimum as a function of pressure at around 1.2 mbar and increases slightly as a function of time. The measurements confirmed that this interfacial layer is formed mainly during the early stages of the deposition process.
Description
International Conference on Thin Films (12. 2002. Bratislava, Slovakia). © 2005 Elsevier B.V. All rights reserved. This work was made possible thanks to a mobility grant of the Secretaría de Estado de Educación y Universidades of the Spanish Ministry of Education and Science. It was also supported by the research project TEC2004/1237 of the same Ministry. Special thanks are given to the ISL for hosting this work.
Unesco subjects
Keywords
Citation
[1] G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89 (2001) 5243. [2] A.I. Kingon, J.P. Maria, S.K. Streiffer, Nature 406 (2000) 1032. [3] D.A. Buchanan, IBM J. Res. Develop. 43 (1999) 245. [4] F.L. Martínez, R. Ruíz-Merino, Á. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, C. Jeynes, N.P. Barradas, L. Wang, H.S. Reehal, Thin Solid Films 459 (2004) 203. [5] I. Mártil, Á. del Prado, E. San Andrés, G. González-Díaz, F.L. Martínez, J. Appl. Phys. 94 (2003) 2642. [6] E. San Andrés, Á. del Prado, I. Mártil, G. González-Díaz, F.L. Martínez, J. Vac. Sci. Technol. 21 (2003) 1306. [7] Á. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, D. Bravo, F.J. López, M. Fernández, F.L. Martínez, J. Appl. Phys. 94 (2003) 1019. [8] Á. del Prado, E. San Andrés, I. Mártil, G. González-Díaz, D. Bravo, F.J. López, W. Bohne, J. Röhrich, B. Selle, F.L. Martínez, J. Appl. Phys. 93 (2003) 8930. [9] Á. del Prado, E. San Andrés, F.L. Martínez, I. Mártil, G. González-Díaz, W. Bohne, J. Röhrich, B. Selle, M. Fernández, Vacuum 67 (2002) 507. [10] Y.S. Lin, R. Puthenkovilakam, J.P. Chang, Appl. Phys. Lett. 81 (2002) 2041. [11] J.C. Barbour, B.L. Doyle, in: J.R. Tesmer, M. Nastasi (Eds.), Handbook of Modern Ion Beam Materials Analysis, Materials Research Society, Pittsburgh, 1995, p. 83. [12] W. Kern, D. Puotinen, RCA Rev. 31 (1970) 187. [13] W. Bohne, J. Röhrich, G. Röschert, Nucl. Instrum. Methods Phys. Res., B Beam Interact. Mater. Atoms 136– 138 (1998) 633. [14] W. Bohne, S. Hessler, G. Röschert, Nucl. Instrum. Methods Phys. Res., B Beam Interact. Mater. Atoms 113 (1996) 78. [15] W. Bohne, W. Fuhs, J. Röhrich, B. Selle, G. González-Díaz, I. Mártil, F.L. Martínez, Á. del Prado, Surf. Interface Anal. 30 (2000) 534. [16] R.C. Weast, M.J. Astle, W.H. Beyer (Eds.), CRC Handbook of Chemistry and Physics, CRC Press, Boca Ratón, 1987. [17] A. Kawamoto, J. Jameson, P. Griffin, K. Cho, R. Dutton, IEEE Electron Device Lett. 22 (2001) 14.
Collections