Publication:
Conductance transient comparative analysis of electron-cyclotron resonance plasma-enhanced chemical vapor deposited SiNx, SiO2/SiNx, and SiOxNy dielectric films on silicon substrates

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2004-01
Authors
Mártil de la Plaza, Ignacio
Prado Millán, Álvaro del
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Inst. Pure Applied Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
An interface quality comparative study of metal-insulator-semiconductor (MIS) structures based on SiNx, SiO2/SiNx and SiO(x)Ny dielectric films deposited on silicon substrates by electron-cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) has been carried out. Overall interpretation of deep-level transient spectroscopy (DLTS) and conductance transient (G-t) measurements enables us to conclude that the interface quality of Al/SiOxNy/Si MIS structures is superior to those of Al/SiNx/Si devices. Moreover,. we have proved that thermal treatments applied to Al/SiOxNy/Si capacitors induce defect passivation, possibly related to the presence of hydrogen in the films, and disorder-induced gap-state (DIGS) density maxima can decrease to values even lower than those corresponding to Al/SiNx/SiO2/Si devices.
Description
© 2004 The Japan Society of Applied Physics. The authors would like to thank C.A.I. de Implantación Iònica from Complutense University in Madrid for technical assistance with the ECR-PECVD system. This research was partially supported by the Spanish DGESIC under grant nos. TIC 1FD97-2085 and TIC 01/1253.
Unesco subjects
Keywords
Citation
1) Y. Ma and G. Lucovsky: J. Vac. Sci. Technol. B, 12,(1994) 2504. 2) Y. Ma, T. Yasuda and G. Lucovsky: J. Vac. Sci. Technol. B, 11, (1993) 1533. 3) D. Landheer, Y. Tao, J. E. Hulse, T. Quance and D. X. Xu: J. Electrochem. Soc., 143, (1996) 1681. 4) S. V. Hattangady, H. Niimi and G. Lucovsky: J. Vac. Sci. Technol. A, 14, (1996) 3017. 5) P. K. Shufflebotham, D. J. Thomson and H. C. Card: J. Appl. Phys., 64, (1988) 4398. 6) A. Popov: J. Vac. Sci. Technol. A, 7, (1989) 894. 7) T. T. Chau, S. R. Mejia and K. C. Kao: J. Vac. Sci. Technol. B, 10, (1992) 2170. 8) S. Dueñas, R. Peláez, H. Castán, R. Pinacho, L. Quintanilla, J. Barbolla, I. Mártil and G. González-Díaz: Appl. Phys. Lett., 71, (1997) 826. 9) H. Castán, S. Dueñas, J. Barbolla, E. Redondo, N. Blanco, I. Mártil and G. González-Díaz: Microelectron. Reliab., 40, (2000) 845. 10) H. Castán, S. Dueñas and J. Barbolla: Jpn. J. Appl. Phys., 41, (2002) L1215. 11) W. Bohne, W. Fush, J. Röhrich, B. Selle, I. Sieber, Á. del Prado, E. San Andrés, I. Mártil and G. González-Díaz: Surf. Interface Anal., 34, (2002) 749. 12) Á. del Prado, F. L. Martínez, I. Mártil, G. González-Díaz and M. Fernández: J. Vac. Sci. Technol. A, 17, (1999) 1263. 13) Á. del Prado, I. Mártil, M. Fernández and G. González-Díaz: Thin Solid Films, 343–344, (1999) 437. 14) L. He, H. Hasegawa, T. Sawada and H. Ohno: J. Appl. Phys., 63, (1988) 2120. 15) L. He, H. Hasegawa, T. Sawada and H. Ohno: Jpn. J. Appl. Phys., 27, (1988) 512. 16) E. H. Nicollian and J. R. Brews: MOS Physics and Technology (John Wiley & Sons, New York, 1982), Chap. 8. 17) G.D. Wilk, R.W. Wallace and J.M. Anthony: J. Appl. Phys., 89, (2001) 5243. 18) C. Parker, G. Lucovsky and J. Hauser: IEEE Electron Device Lett., 19, (1998) 106. 19) H. Yang, H. Niimi, J. W. Keister, G. Lucovsky and J. E. Rowe: IEEE Electron Device Lett., 21, (2000) 76. 20) H. Castán, S. Dueñas, J. Barbolla, Á. del Prado, I. Mártil and G. González-Díaz: Jpn. J. Appl. Phys., 42, (2003) 4978.
Collections