Publication:
Bonding configuration and density of defects of SiOxHy thin films deposited by the electron cyclotron resonance plasma method

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003-12-15
Authors
Mártil de la Plaza, Ignacio
Prado Millán, Álvaro del
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The composition, bonding configuration, hydrogen content, and paramagnetic defects of SiOxHy thin films were studied. Films were deposited by the electron cyclotron resonance plasma method at room temperature using SiH4 and O-2 as precursor gases. The film composition was measured by heavy ion elastic recoil detection analysis and energy dispersive x-ray spectroscopy. Suboxide films with compositions ranging from SiO2 to SiH0.38 were obtained. Infrared spectroscopy showed the presence of different Si-O and Si-H vibration modes. The usual estimation of the oxygen to silicon ratio by the wave number of the Si-O-Si stretching band was not accurate for films far from stoichiometry. These off-stoichiometric films also showed a broader Si-O-Si stretching peak than the stoichiometric ones, indicating a higher bonding disorder. The position of the Si-O-Si bending and rocking modes did not depend on the film composition. On the other hand, the peak position of the Si-H modes were found strongly dependent on the Si environment. By single-wavelength ellipsometry at lambda=632.8 nm the refractive index n was found to range between 1.45 (SiO2) and 2.04 (SiO0.06H0.36). Electron spin resonance measurements showed that stoichiometric films presented the well known E' center (.Siequivalent toO(3)) with concentrations in the 10(16)-10(17) cm(-3) range, while for Si-rich films (x<1) the Si dangling bond center (Si-DB, .Siequivalent toSi(3)) was the only detectable defect, with concentrations in the 10(18)-10(19) cm(-3) range. In near-stoichiometric films both E-' and Si-DB centers were found.
Description
© 2003 American Institute of Physics. The authors acknowledge C.A.I. de Implantación Iónica (U.C.M.) for technical support, and especially to Rosa Cimas Cuevas for aid in sample processing, and C.A.I. de Espectroscopia (U.C.M.) for providing access to the FTIR spectrometer. This work was partially supported by the Spanish CICYT, under Contract No. TIC 01-1253.
Unesco subjects
Keywords
Citation
1) G. Lucovsky, J. Non-Cryst. Solids, 227-230, 1 (1998). 2) K. T. Queeney, M. K. Weldon, J. P. Chang, Y. J. Chabal, A. B. Gurevich, J. Sapjeta, and R. L. Opila, J. Appl. Phys., 87, 1322 (2000). 3) G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson, and R. S. Urdahl, Appl. Phys. Lett., 73, 1517 (1998). 4) F. Irrera and F. Russo, IEEE Trans. Electron Devices, ED-46, 2315 (1999). 5) I. Crupi, S. Lombardo, C. Spinella, C. Bongiormo, Y. Liao, C. Gerardi, B. Fazio, M. Vulpio, and S. Privitera, J. Appl. Phys., 89, 5552 (2001). 6) D. N. Kouvatsos, V. Ioannou-Sougleridis, and A. G. Nassiopoulou, Appl. Phys. Lett., 82, 397 (2003). 7) U. Kahler and H. Hofmeister, Appl. Phys. A: Mater. Sci. Process., 74, 13 (2002). 8) D. Nesheva, C. Raptis, A. Perakis, I. Bineva, Z. Aneva, Z. Levi, S. Alexandrova and H. Hofmeister, J. Appl. Phys., 82, 4678 (2002). 9) G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacoma, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, Appl. Phys. A: Mater. Sci. Process., 74, 1 (2002). 10) M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, J. Appl. Phys., 90, 2057 (2001). 11) S. M. Sze, Physics of Semiconductor Devices, (Wiley, New York, 1981). 12) C. Lin, W. Tseng, M. S. Feng, and B. Lee, J. Appl. Phys., 87, 2808 (2000). 13) D. V. Tsu, G. Lucovsky, and B. N. Davidson, Phys. Rev. B, 40, 1795 (1989). 14) M. Zacharias, D. Dimova-Malinovska, and M. Stutzmann, Philos. Mag. B, 73, 799 (1996). 15) P. M. Lenahan and J. F. Conley, Jr., J. Vac. Sci. Technol. B, 16, 2134 (1998). 16) T. Inokuma, L. He, Y. Kurata, and S. Hasegawa, J. Electrochem. Soc., 142, 2346 (1995). 17) E. Holzenkampfer, F.-W. Richter, J. Stuke, and U. Voget-Grote, J. Non-Cryst. Solids, 32, 327 (1979). 18) P. V. Bulkin, P. L. Swart, and B. M. Lacquet, J. Non-Cryst. Solids, 226, 58 (1998). 19) K. Yoshida, I. Umezu, N. Sakamoto, M. Inada, and A. Sugimura, J. Appl. Phys., 92, 5936 (2002). 20) D. Nesheva, I. Bineva, Z. Levi, Z. Aneva, T. Merdzhanova, and J. C. Pivin, Vacuum, 68, 1 (2003). 21) K. Miyake, S. Kimura, T. Warabisako, H. Sunami, and T. Tokuyama, J. Vac. Sci. Technol. A, 2, 496 (1984). 22) B. H. Lee, Y. Jeon, K. Zawadzki, W.-J. Qi, and J. Lee, Appl. Phys. Lett., 74, 3143 (1999). 23) T. P. Ma, IEEE Trans. Electron Devices, ED-45, 680 (1998). 24) M. Losurdo, P. Capezzuto, G. Bruno, G. Perna, and V. Capozzi, Appl. Phys. Lett., 81, 16 (2002). 25) P. K. Shufflebotham, D. J. Thomson, and H. C. Card, J. Appl. Phys., 64, 4398 (1988). 26) F. L. Martínez, E. San Andrés, Á. del Prado, I. Mártil, D. Bravo, and F. J. López, J. Appl. Phys., 90, 1573 (2001). 27) F. L. Martínez, Á. Del Prado, I. Mártil, G. González-Díaz, W. Bohne, W. Fuhs, J. Rörich, B. Selle, and I. Sieber, Phys. Rev. B, 63, 245320 (2001). 28) W. Bohne, J. Röhrich, and G. Röschert, Nucl. Instrum. Methods Phys. Res. B, 136-138, 633 (1998). 29) W. Bohne, S. Hessler, and G. Röschert, Nucl. Instrum. Methods Phys. Res. B, 113, 78 (1996). 30) W. Bohne, W. Fuhs, J. Röhrich, B. Selle, I. Sieber, Á. del Prado, E. San Andrés, I. Mártil, and G. González-Díaz, Surf. Interface Anal., 34, 749 (2002). 31) G. F. Bastin and H. J. M. Heijligers, Scanning, 12, 225 (1990). 32) B. J. Hinds, F. Wang, D. M. Wolfe, C. L. Hinkle, and G. Lucovsky, J. Vac. Sci. Technol. B, 16, 2171 (1998). 33) E. San Andrés, Á. del Prado, I. Mártil, G. González-Díaz, D. Bravo, and F. J. López, J. Appl. Phys., 92, 1906 (2002). 34) F. Rochet, G. Dufour, H. Roulet, B. Pelloie, J. Perrière, E. Fogarassy, A. Slaoui, and M. Froment, Phys. Rev. B, 37, 6468 (1988). 35) A. Sasella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bachetta, and L. Zanotti, J. Vac. Sci. Technol. A, 15, 377 (1997). 36) D. Landheer, Y. Tao, J. E. Hulse, T. Quance, and D.-X. Xu, J. Electrochem. Soc., 143, 1681 (1996). 37) E. San Andrés, Á. del Prado, F. L. Martínez, I. Mártil, D. Bravo, and F. J. López, J. Appl. Phys., 87, 1187 (2000). 38) K. Furukawa, Y. Liu, H. Nakashima, D. Gao, K. Uchino, K. Muraoka, and H. Tsuzuki, Appl. Phys. Lett., 72, 725 (1998). 39) L. He, Y. Kurata, T. Inokuma, and S. Hasegawa, Appl. Phys. Lett., 63, 162 (1993). 40) G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, and W. Czubatyj, Phys. Rev. B, 28, 3225 (1983). 41) G. Lucovsky and W. B. Pollard, J. Vac. Sci. Technol. A, 1, 313 (1983). 42) Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, Orlando, FL, 1985). 43) M. J. Uren, J. H. Stathis, and E. Cartier, J. Appl. Phys., 80, 3915 (1996). 44) E. San Andrés, Á. del Prado, I. Mártil, G. González-Díaz, F. L. Martínez, D. Bravo, and F. J. López, Vacuum, 67, 531 (2002). 45) L. He, T. Inokuma, and S. Hasegawa, Jpn. J. Appl. Phys., Part 1, 35, 1503 (1996). 46) H. Angermann, W. Henrion, and A. Ro¨seler, Silicon-Based Materials and Devices, Vol. 1: Materials and Processing (Academic, New York, 2001), Chap. 7, p. 267. 47) H. R. Philipp, J. Phys. Chem. Solids, 32, 1935 (1971).
Collections