Publication:
Interfacial state density and conductance-transient three-dimensional profiling of disordered-induced gap states on metal insulator semiconductor capacitors fabricated from electron-cyclotron resonance plasma-enhanced chemical vapor deposited SiOxNyHz films

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003-08-01
Authors
Mártil de la Plaza, Ignacio
Prado Millán, Álvaro del
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Inst. Pure Applied Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
An electrical characterization of Al/SiOxNyHz/Si metal-insulator-semiconductor (MIS) structures has been carried out. SiOxNyHz films of different compositions have been obtained from these structures by varying gas flow in the electron-cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) system. The presence of nitrogen in the films increases the dielectric constant value and degrades the interface quality, as our measurements demonstrate. The effect of thermal annealing has also been determined. Capacitance-voltage (C-V) results show that unannealed samples exhibit positive flat-band voltages, whereas annealed ones exhibit negative values. On the other hand, from deep-level transient spectroscopy (DLTS) measurements we can conclude that interfacial state density diminishes when thermal treatments are applied. Moreover, conductance transient analysis provides the energetic and spatial distribution of defects in the films and demonstrates that thermal improvement affects not only the interface, but also the insulator bulk.
Description
© 2003 The Japan Society of Applied Physics. The authors would like to thank C. A. I. de Implantación Iónica from Complutense University in Madrid for technical assistance with the ECR-PECVD system. This research was partially supported by the Spanish DGESIC under grant nos. TIC 1FD97-2085 and TIC 98/0740.
Unesco subjects
Keywords
Citation
1) S. V. Hattangady, H. Niimi and G. Lucovsky: J. Vac. Sci. Technol. A, 14, (1996) 3017. 2) J. I. Yeh and S. C. Lee: J. Appl. Phys., 79, (1996) 656. 3) P. V. Bulkin, P. L. Swart and B. M. Lacquet: J. Non-Cryst. Solids, 187, (1995) 484. 4) T. T. Chau, S. R. Mejia and K. C. Kao: J. Vac. Sci. Technol. B, 10, (1992) 2170. 5) P. K. Shufflebotham, D. J. Thomson and H. C. Card: J. Appl. Phys., 64, (1988) 4398. 6) A. Popov: J. Vac. Sci. Technol. A, 7, (1989) 894. 7) Á. Prado, F. L. Martínez, I. Mártil, G. González-Díaz and M. Fernández: J. Vac. Sci. Technol. A, 17, (1999) 1263. 8) Á. Prado, I. Mártil, M. Fernández and G. González-Díaz: Thin Solid Films, 343–344, (1999) 437. 9) L. He, H. Hasegawa, T. Sawada and H. Ohno: J. Appl. Phys., 63, (1988) 2120. 10) L. He, H. Hasegawa, T. Sawada and H. Ohno: Jpn. J. Appl. Phys., 27, (1988) 512. 11) E. H. Nicollian and J. R. Brews: MOS Physics and Technology (John Wiley & Sons, New York, 1982), Chap. 8. 12) S. Dueñas, R. Peláez, H. Castán, R. Pinacho, L. Quintanilla, J. Barbolla, I. Mártil and G. González-Díaz: Appl. Phys. Lett., 71, (1997) 826. 13) H. Castán, S. Dueñas, J. Barbolla, E. Redondo, N. Blanco, I. Mártil and G. González-Díaz: Microelectron. Reliab., 40, (2000) 845. 14) H. Castán, S. Dueñas and J. Barbolla: Jpn. J. Appl. Phys., 41, (2002) L1215. 15) T. Sakurai and T. Sugano: J. Appl. Phys., 52, (1981) 2889.
Collections