Publication:
Optical and structural properties of SiOxNyHz films deposited by electron cyclotron resonance and their correlation with composition

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003-06-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
SiOxNyHz films were deposited from O-2, N-2, and SiH4 gas mixtures at room temperature using the electron cyclotron resonance plasma method. The absolute concentrations of all the species present in the films (Si, O, N, and H) were measured with high precision by heavy-ion elastic recoil detection analysis. The composition of the films was controlled over the whole composition range by adjusting the precursor-gases flow ratio during deposition. The relative incorporation of O and N is determined by the ratio Q = phi(O-2)/(phi(SiH4) and the relative content of Si is determined by R =[phi(O-2)+phi(N-2)]/phi(SiH4) where phi(SiH4), phi(O-2), and phi(N-2) are the SiH4, O-2, and N-2 gas flows, respectively. The optical properties (infrared absorption and refractive index) and the density of paramagnetic defects were analyzed in dependence on the film composition. Single-phase homogeneous films were obtained at low SiH4 partial pressure during deposition; while those samples deposited at high SiH4 partial pressure show evidence of separation of two phases. The refractive index was controlled over the whole range between silicon nitride and silicon oxide, with values slightly lower than in stoichiometric films due to the incorporation of H, which results in a lower density of the films. The most important paramagnetic defects detected in the films were the K center and the E' center. Defects related to N were also detected in some samples. The total density of defects in SiOxNyHz films was higher than in SiO2 and lower than in silicon nitride films.
Description
© 2003 American Institute of Physics. The authors acknowledge C. A. I. de Impalntación Iónica (U. C. M.) for availability of deposition system and Dr. E. Iborra (E. T. S. I. T. Universidad Politécnica de Madrid) for availability of FTIR spectrometer. The work has been partially financed by the CICYT (Spain) under Contract No. TIC 01-1253. Technical support of G. Keiler is gratefully acknowledged.
Unesco subjects
Keywords
Citation
1) Y. Ma and G. Lucovsky, J. Vac. Sci. Technol. B, 12, 2504 (1994). 2) L. Manchanda, G. R. Weber, Y. O. Kim, L. C. Feldman, N. Moryia, B. E. Weir, R. C. Kistler, M. L. Green, and D. Brasen, Microelectron. Eng., 22, 69 (1993). 3) E. C. Carr and R. A. Buhrman, Appl. Phys. Lett., 63, 54 (1993). 4) T. Arakawa, R. Matsumoto, and A. Kita, Jpn. J. Appl. Phys., Part 1, 35, 1491 (1996). 5) W. A. P. Claassen, H. A. J. Th. v. d. Pol, A. H. Goemans, and A. E. T. Kuiper, J. Electrochem. Soc., 133, 1458 (1986). 6) P. V. Bulkin, P. L. Swart, and B. M. Lacquet, J. Non-Cryst. Solids, 187, 484 (1995). 7) S. Callard, A. Gagnaire, and J. Joseph, J. Vac. Sci. Technol. A, 15, 2088 (1997). 8) F. Gaillard, P. Schiavone, and P. Brault, J. Vac. Sci. Technol. A, 15, 2777 (1997). 9) H. T. Tang, W.N. Lennard, C. S. Zhang, K. Griffiths, B. Li, L. C. Feldman, and M. L. Green, J. Appl. Phys., 80, 1816 (1996). 10) I. J. R. Baumvol, F. C. Stedile, J.-J. Ganem, I. Trimaille, and S. Rigo, Appl. Phys. Lett., 70, 2007 (1997). 11) L.-N. He, T. Inokuma, and S. Hasegawa, Jpn. J. Appl. Phys., Part 1, 35, 1503 (1996). 12) S. V. Hattangady, H. Niimi, and G. Lucovsky, J. Vac. Sci. Technol. A, 14, 3017 (1996). 13) M. J. Hernández, J. Garrido, J. Martínez, and J. Piqueras, Semicond. Sci. Technol., 12, 927 (1997). 14) Á. del Prado, I. Mártil, M. Fernández, and G. González-Díaz, Thin Solid Films, 343–344, 432 (1999). 15) Á. del Prado, F. L. Martínez, M. Fernández, I. Mártil, and G. González-Díaz, J. Vac. Sci. Technol. A, 17, 1263 (1999). 16) S. García, J. M. Martín, M. Fernández, I. Mártil, and G. González-Díaz, Philos. Mag., 73, 487 (1996). 17) F. L. Martínez, I. Mártil, G. González-Díaz, B. Selle, and I. Sieber, J. Non-Cryst. Solids, 227–230, 523 (1998). 18) W. Bohne, J. Röhrich, and G. Röschert, Nucl. Instrum. Methods Phys. Res. B, 136–138, 633 (1998). 19) W. Bohne, W. Fuhs, J. Röhrich, B. Selle, I. Sieber, Á. del Prado, E. San Andrés, I. Mártil, and G. González-Díaz, Surf. Interface Anal., 34, 749 (2002). 20) W. A. Lanford and M. J. Rand, J. Appl. Phys., 49, 2473 (1978). 21) T. S. Eriksson and C. G. Granqvist, J. Appl. Phys., 60, 2081 (1986). 22) Á. del Prado, E. San Andrés, F. L. Martínez, I. Mártil, G. González-Díaz, W. Bohne, J. Röhrich, B. Selle, and M. Fernández, Vacuum, 67, 507 (2002). 23) S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981). 24) A. Sassella, P. Lucarno, A. Borghesi, F. Corni, S. Rojas, and L. Zanotti, J. Non-Cryst. Solids, 187, 395 (1995). 25) G. Lucovsky, Solid State Commun., 29, 571 (1979). 26) J.-L. Yeh and S.-C. Lee, J. Appl. Phys., 79, 656 (1996). 27) Y. Cros and J. C. Rostaing, Proceedings E: Materials Research Society, Strasbourg, June 1986, p. 77. 28) G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, and W. Czubatyj, Phys. Rev. B, 28, 3234 (1983). 29) A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, J. Vac. Sci. Technol. A, 15, 377 (1997). 30) D. V. Tsu, G. Lucovsky, M. J. Mantini, and S. S. Chao, J. Vac. Sci. Technol. A, 5, 1998 (1987). 31) H. R. Philipp, J. Non-Cryst. Solids, 8–10, 627 (1972). 32) A. Sassella, Phys. Rev. B, 48, 14208 (1993). 33) J. S. Blakemore, Solid State Physics (Cambridge University Press, Cambridge, 1985). 34) W. L. Warren, J. Kanicki, F. C. Rong, and E. H. Poindexter, J. Electrochem. Soc., 139, 880 (1992). 35) W. L. Warren, E. H. Poindexter, M. Offenberg, and W. Müller-Warmuth, J. Electrochem. Soc., 139, 872 (1992). 36) W. L. Warren, P. M. Lenahan, and S. E. Curry, Phys. Rev. Lett., 65, 207 (1990). 37) S. Hasegawa, S. Sakamori, M. Futatsudera, T. Inokuma, and Y. Kurata, J. Appl. Phys., 89, 2598 (2001). 38) J. H. Stathis, J. Chapple-Sokol, E. Tierney, and J. Batey, Appl. Phys. Lett., 56, 2111 (1990). 39) T. E. Tsai, D. L. Griscom, and E. J. Friebele, Phys. Rev. B, 38, 2140 (1988). 40) E. San Andrés, Á. del Prado, I. Mártil, G. González-Díaz, F. L. Martínez, D. Bravo, F. J. López, and M. Fernández, Vacuum, 67, 525 (2002). 41) F. L. Martínez, Á. del Prado, I. Mártil, G. González-Díaz, W. Bohne, W. Fuhs, J. Röhrich, and B. Selle, Phys. Rev. B, 63, 245320 (2001). 42) E. San Andrés, Á. del Prado, I. Mártil, G. González-Díaz, D. Bravo, and F.J. López, J. Appl. Phys., 92, 1906 (2002). 43) D. L. Smith, J. Vac. Sci. Technol. A, 11, 1843 (1993). 44) P. G. Pai, S. S. Chao, Y. Takagi, and G. Lucovsky, J. Vac. Sci. Technol. A, 4, 689 (1986). 45) C. M. M. Denisse, K. Z. Troost, J. B. Oude Elferink, F. H. P. M. Habraken, W. F. van der Weg, and M. Hendriks, J. Appl. Phys., 60, 2536 (1986). 46) B.-R. Zhang, Z. Yu, G. J. Collins, T. Hwang, and W. H. Ritchie, J. Vac. Sci. Technol. A, 7, 176 (1989). 47) L. Pinard and J. M. Mackowski, Appl. Opt., 36, 5451 (1997).
Collections