Universidad Complutense de Madrid
E-Prints Complutense

Optical and structural properties of SiOxNyHz films deposited by electron cyclotron resonance and their correlation with composition

Impacto

Downloads

Downloads per month over past year

Mártil de la Plaza, Ignacio and González Díaz, Germán and Prado Millán, Álvaro del and San Andres Serrano, Enrique (2003) Optical and structural properties of SiOxNyHz films deposited by electron cyclotron resonance and their correlation with composition. Journal of Applied Physics, 93 (11). pp. 8930-8938. ISSN 0021-8979

[img]
Preview
PDF
307kB

Official URL: http://dx.doi.org/10.1063/1.1566476


URLURL Type
http://scitation.aip.orgPublisher


Abstract

SiOxNyHz films were deposited from O-2, N-2, and SiH4 gas mixtures at room temperature using the electron cyclotron resonance plasma method. The absolute concentrations of all the species present in the films (Si, O, N, and H) were measured with high precision by heavy-ion elastic recoil detection analysis. The composition of the films was controlled over the whole composition range by adjusting the precursor-gases flow ratio during deposition. The relative incorporation of O and N is determined by the ratio Q = phi(O-2)/(phi(SiH4) and the relative content of Si is determined by R =[phi(O-2)+phi(N-2)]/phi(SiH4) where phi(SiH4), phi(O-2), and phi(N-2) are the SiH4, O-2, and N-2 gas flows, respectively. The optical properties (infrared absorption and refractive index) and the density of paramagnetic defects were analyzed in dependence on the film composition. Single-phase homogeneous films were obtained at low SiH4 partial pressure during deposition; while those samples deposited at high SiH4 partial pressure show evidence of separation of two phases. The refractive index was controlled over the whole range between silicon nitride and silicon oxide, with values slightly lower than in stoichiometric films due to the incorporation of H, which results in a lower density of the films. The most important paramagnetic defects detected in the films were the K center and the E' center. Defects related to N were also detected in some samples. The total density of defects in SiOxNyHz films was higher than in SiO2 and lower than in silicon nitride films.


Item Type:Article
Additional Information:

© 2003 American Institute of Physics. The authors acknowledge C. A. I. de Impalntación Iónica (U. C. M.) for availability of deposition system and Dr. E. Iborra (E. T. S. I. T. Universidad Politécnica de Madrid) for availability of FTIR spectrometer. The work has been partially financed by the CICYT (Spain) under Contract No. TIC 01-1253. Technical support of G. Keiler is gratefully acknowledged.

Uncontrolled Keywords:Silicon-Oxynitride Films, Chemical-Vapor-Deposition, Paramagnetic Point-Defects, Nitride Thin-Films, A-SiNx-H, Substrate-Temperature, Tetrahedron Model, Plasma, Nitrogen, Growth.
Subjects:Sciences > Physics > Electricity
Sciences > Physics > Electronics
ID Code:26139
Deposited On:10 Jul 2014 08:40
Last Modified:10 Dec 2018 14:58

Origin of downloads

Repository Staff Only: item control page