Publication:
Dark energy, non-minimal couplings and the origin of cosmic magnetic fields

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2010-12
Authors
Beltrán Jiménez, José
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this work we consider the most general electromagnetic theory in curved space-time leading to linear second order differential equations, including non-minimal couplings to the space time curvature. We assume the presence of a temporal electromagnetic background whose energy density plays the role of dark energy, as has been recently suggested. Imposing the consistency of the theory in the weak-field limit, we show that it reduces to standard electromagnetism in the presence of an effective electromagnetic current which is generated by the momentum density of the matter/energy distribution, even for neutral sources. This implies that in the presence of dark energy, the motion of large-scale structures generates magnetic fields. Estimates of the present amplitude of the generated seed fields for typical spiral galaxies could reach 10(-9) G without any amplification. In the case of compact rotating objects, the theory predicts their magnetic moments to be related to their angular momenta in the way suggested by the so called Schuster-Blackett conjecture.
Description
© 2010 IOP Publishing Ltd and SISSA. We would like to thank Prof. Misao Sasaki for useful comments. This work has been supported by MICINN (Spain) project numbers FIS 2008-01323 and FPA 2008-00592, CAM/ UCM 910309, MEC grant BES-2006-12059 and MICINN Consolider Ingenio MULTIDARK CSD2009-00064. J.B. also wishes to thank support from the Norwegian Council under the YGGDRASIL project no 195761/V11.
Unesco subjects
Keywords
Citation
[1] L.M. Widrow, Origin of galactic and extragalactic magnetic fields, Rev. Mod. Phys. 74 (2002) 775 [astro ph/0207240] [SPIRES]; R.M. Kulsrud and E.G. Zweibel, The origin of astrophysical magnetic fields, Rept. Prog. Phys. 71 (2008) 0046091 [arXiv:0707.2783] [SPIRES]; P.P. Kronberg, Extragalactic magnetic fields, Rept. Prog. Phys. 57 (1994) 325 [SPIRES]. [2] A. Neronov and I. Vovk, Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars, Science 328 (2010) 73 [arXiv:1006.3504] [SPIRES]; F. Tavecchio et al., The intergalactic magnetic field constrained by Fermi/LAT observations of the TeV blazar 1ES 0229+200, arXiv:1004.1329 [SPIRES]; S. Ando and A. Kusenko, Evidence for gamma-ray halos around active galactic nuclei and the first measurement of intergalactic magnetic fields, Astrophys. J. 722 (2010) L39 [arXiv:1005.1924] [SPIRES]. [3] E.R. Harrison, Generation of magnetic fields in the radiation era, Mon. Not. Roy. Astron. Soc. 147 (1970) 279; Origin of magnetic fields in the early universe, Phys. Rev. Lett. 30 (1973) 188. [4] M.S. Turner and L.M. Widrow, Inflation produced, large scale magnetic fields, Phys. Rev. D 37 (1988) 2743 [SPIRES]; K. Bamba and M. Sasaki, Large-scale magnetic fields in the inflationary universe, JCAP 02 (2007) 030 [astro-ph/0611701] [SPIRES]; R. Durrer, L. Hollenstein and R.K. Jain, Can slow roll inflation induce relevant helical magnetic fields?, arXiv:1005.5322 [SPIRES]. [5] J.M. Quashnock, A. Loeb and D.N. Spergel, Magnetic field generation during the cosmological QCD phase transition Astrophys. J. 344 (1989) L49 [SPIRES]; T. Vachaspati, Magnetic fields from cosmological phase transitions, Phys. Lett. B 265 (1991) 258 [SPIRES]. [6] O. Bertolami and D.F. Mota, Primordial magnetic fields via spontaneous breaking of Lorentz invariance, Phys. Lett. B 455 (1999) 96 [gr-qc/9811087] [SPIRES]. [7] A.L. Maroto, Primordial magnetic fields from metric perturbations, Phys. Rev. D 64 (2001) 083006 [hep ph/0008288] [SPIRES]; S. Matarrese, S. Mollerach, A. Notari and A. Riotto, Large-scale magnetic fields from density perturbations, Phys. Rev. D 71 (2005) 043502 [astro ph/0410687] [SPIRES]; K. Ichiki, K. Takahashi, H. Ohno, H. Hanayama and N. Sugiyama, Cosmological magnetic field: a fossil of density perturbations in the early universe, Science. 311 (2006) 827 [astro-ph/0603631] [SPIRES]; K. Ichiki, K. Takahashi, N. Sugiyama, H. Hanayama and H. Ohno [8] J.B. Jimenez and A.L. Maroto, Cosmological electromagnetic fields and dark energy, JCAP 03 (2009) 016 [arXiv:0811.0566] [SPIRES]; The electromagnetic dark sector, Phys. Lett. B 686 (2010) 175 [arXiv:0903.4672] [SPIRES]; Dark energy: the absolute electric potential of the universe, Int. J. Mod. Phys. D 18 (2009) 2243 [arXiv:0905.2589] [SPIRES]; J.B. Jimenez, T.S. Koivisto, A.L. Maroto and D.F. Mota, Perturbations in electromagnetic dark energy, JCAP 10 (2009) 029 [arXiv:0907.3648] [SPIRES]. [9] J.B. Jimenez and A.L. Maroto, Cosmological magnetic fields from inflation in extended electromagnetism, arXiv:1010.3960 [SPIRES]. [10] C.M. Will, Theory and experiment in gravitational physics, Cambridge University Press, Cambridge U.K.(1993) pg. 380 [SPIRES]. [11] J.B. Jimenez and A.L. Maroto, Viability of vector tensor theories of gravity, JCAP 02 (2009) 025 [arXiv:0811.0784] [SPIRES]. [12] S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge U.K. (1973) [SPIRES]; G.M. Shore, Causality and superluminal light, gr qc/0302116 [SPIRES]. [13] C. Eling, Energy in the Einstein-aether theory, Phys. Rev. D 73 (2006) 084026 [Erratum ibid. D 80 (2009) 129905] [gr-qc/0507059] [SPIRES]. [14] A. Schuster, A critical examination of the possible causes of terrestrial magnetism, Proc. Lond. Phys. Soc. 24 (1912) 121;A. Einstein, ¨Uber den ¨Ather, Schw. Naturf. Ges. Verh. 105 Pt. 2 (1924) 85; S.W. Saunders and H.R. Brown, The philosophy of vacuum, Clarendon, Oxford U.K. (1991) pg. 291 [SPIRES]; P.M.S. Blackett, The magnetic field of massive rotating bodies, Nature 159 (1947) 658. [15] W. Pauli, On the formulation of the laws of nature with five homogeneous coordinates. Part I: classical theory (in German), Annalen Phys. 18S5 (1933) 305 [SPIRES]; J.G. Bennett et al., Unified field theory in a curvature-free five-dimensional manifold, Proc. R. Soc. London A 198 (1949) 39; A. Papapetrou, A 4-dimensional generalization of Wilson’s hypothesis, Philos. Mag. 41 (1950) 399; G. Luchak, A fundamental theory of the magnetism of massive rotating bodies, Can. J. Phys. 29(1952) 470; A.O. Barut and T. Gornitz, On the gyromagnetic ratio in the Kaluza-Klein theories and the Schuster-Blackett law, Found. Phys. 15 (1985) 433 [SPIRES [16] Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES]. [17] G. Raffelt, Pulsar bound on the photon electric charge reexamined, Phys. Rev. D 50 (1994) 7729 [hep-ph/9409461] [SPIRES]. [18] C. Caprini, S. Biller and P.G. Ferreira, Constraints on the electrical charge asymmetry of th universe, JCAP 02 (2005) 006 [hep-ph/0310066] [SPIRES]; V.V. Kobychev and S.B. Popov, Constraints on the photon charge based on observations of extragalactic sources, Astron. Lett. 31 (2005) 147 [hep-ph/0411398] [SPIRES]. [19] R. Opher and U.F. Wichoski, Origin of magnetic fields in the universe due to nonminimal gravitational-electromagnetic coupling, Phys. Rev. Lett. 78 (1997) 787 [astro-ph/9701220] [SPIRES]; R. da Silva de Souza and R. Opher, Origin of 1015 − 1016G magnetic fields in the central engine of gamma ray bursts, JCAP 02 (2010) 022 [arXiv:0910.5258] [SPIRES]. [20] S.P. Sirag, Gravitational magnetism, Nature 278 (1979) 535 [SPIRES]. [21] Y.S. Greenberg, Application of superconducting quantum interference devices to nuclear magnetic resonance, Rev. Mod. Phys. 70 (1998) 175 [Erratum ibid. 72 (2000) 329] [SPIRES]. [22] D.H. Lyth, The curvature perturbation in a box, JCAP 12 (2007) 016 [arXiv:0707.0361] [SPIRES]; K. Enqvist, S. Nurmi, D. Podolsky and G.I. Rigopoulos, On the divergences of inflationary superhorizon perturbations, JCAP 04 (2008) 025 [arXiv:0802.0395] [SPIRES]; Y. Urakawa and T. Tanaka, Influence on observation from IR divergence during inflation. I, Prog. Theor. Phys. 122 (2009) 779 [arXiv:0902.3209] [SPIRES].
Collections