Publication:
Rough Fresnel zone plates over metallic surfaces

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2010-04-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
The Optical Society Of America
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We analyze the focusing properties of Fresnel zone plates fabricated over steel tapes using laser ablation. Our intention is to implement the use of micro-optical elements when the use of conventional chrome–glass elements is not indicated. Because of the manufacture process, the surface presents a certain anisotropic roughness, which reduces the focusing properties. First, we develop numerical simulations by means of the Rayleigh–Sommerfeld approach, showing how roughness in both levels of the Fresnel zone plate affects the focalization of the lens. We also manufacture Fresnel zone plates over steel tape, and perform experimental verification that corroborates the numerical results.
Description
© 2010 Optical Society of America. The authors are grateful to Francisco José Torcal Milla for his help. This work has been partially supported by project CCG08-UCM/DPI-3952 of Dirección General de Universidades e Investigación de la Consejería de Educación de la Comunidad de Madrid y Universidad Complutense de Madrid and project DPI2008-02391 of Ministerio de Ciencia e Innovación. Salgado-Remacha acknowledges the economical support of the Ministerio de Ciencia e Innovación.
Keywords
Citation
1. J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Wiley-VCH, 1998). 2. H. P. Herzig, Micro-Optics. Elements, Systems and Applications (Taylor & Francis, 1997). 3. F. J. González, J. Alda, B. Illic, and G. Boreman, “Infrared antennas coupled to lithographic Fresnel zone plate lenses”, Appl. Opt. 43, 6067-6073 (2004). 4. J. Alda, J. M. Rico-García, J. M. López-Alonso, B. Lail, and G. Boreman,•“Design of Fresnel lenses and binary-staircase kinoforms of low value of the aperture number”, Opt. Commun. 260, 454-461 (2006). 5. X. Zhu, D. M. Villeneuve, A. Yu. Naumov, S. Nikumb, and P. B. Corkum, “Experimental study of drilling sub-10 μm holes in thin metal foils with femtosecond laser pulses”, Appl. Surf. Sci. 152, 138-148 (1999). 6. M. F. Modest, “Transient elastic and viscoelastic thermal stresses during laser drilling of ceramics”, J. Heat Transfer 120, 892-898 (1998). 7. J. Krüger and W. Kautek, “Femtosecond-pulse visible laser processing of transparent materials”, Appl. Surf. Sci. 96-98, 430-438 (1996). 8. J. Noack and A. Vogel, “Laser-induced plasma formation in water at nanosecond to femtosecond time scales: calculation of thresholds, absorption coefficients, and energy density”, IEEE J. Quantum Electron. 35, 1156-1167 (1999). 9. F. J. Torcal-Milla, L. M. Sanchez-Brea, and E. Bernabeu, “Talbot effect in rough reflection gratings”, Appl. Opt. 46, 3668-3673 (2007). 10. L. M. Sanchez-Brea, F. J. Torcal-Milla, and E. Bernabeu, “Talbot effect in metallic gratings under Gaussian illumination”, Opt. Commun. 278, 23-27 (2007). 11. F. J. Torcal-Milla, L. M. Sanchez-Brea, and E. Bernabeu, “Double grating systems with one steel tape grating”, Opt. Commun. 281, 5647-5652 (2008). 12. F. Shen and A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula”, Appl. Opt. 45, 1102-1110 (2006). 13. R. W. Wood, “Phase-reversal zone plates, and diffraction-telescopes”, Philos. Mag. 45, 511-522 (1898). 14. V. Baez, “Fresnel zone plate for optical image formation using extreme ultraviolet and soft x radiation”, J. Opt. Soc. Am. 51, 405-412 (1961). 15. J. Kirz, “Phase zone plates for x rays and the extreme uv”, J. Opt. Soc. Am. 64, 301-309 (1974). 16. J. A. Ogilvy, Theory of Wave Scattering From Random Rough Surfaces (Taylor & Francis, 1991). 17. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves form Rough Surfaces (Artech House, 1987), Chap. 5.
Collections