Publication:
C-V, DLTS and conductance transient characterization of SiNx:H/InP interface improved by N-2 remote plasma cleaning of the InP surface

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-06
Authors
Mártil de la Plaza, Ignacio
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Kluwer Academic Publ.
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Electrical characterization of Al/SiNx:H/InP structures shows that ECR nitrogen plasma cleaning of InP surfaces gives rise to a noticeable improvement in the interface quality, whereas insulator and semiconductor bulk properties are maintained at a level sufficient to be used as the gate dielectric in MIS devices. Nitrogen plasma exposure was carried out just before the SiNx plasma deposition without vacuum breaking. To obtain interface state density and to detect deep levels in the semiconductor bulk, deep level transient spectroscopy (DLTS) measurements were carried out. We have also evaluated the insulator damage density, the so-called disorder-induced gap states (DIGS), by means of conductance transient analysis. Our results show that the plasma exposure in N-2 atmospheres is a valuable and simple surface conditioning method.
Description
International Conference on Materials in Microelectronics (3. 2000. Dublin, Irlanda). © 2001 Kluwer Academix Publishers. The authors would like to thank C.A.I. de Implantación Iónica from the Complutense University in Madrid for technical assitance with the ECR-CVD system. This research wasa partially supported by the Spanish DGESIC under Grants No. TIC 1FD97-2085 and TIC 98/0740.
Unesco subjects
Keywords
Citation
1) A. Kapila, X. Si and V. Malhora, Appl. Phys. Lett., 62 (1993) 2259. 2) E. Redondo, N. Blanco, I. Mártil, G. González-Díaz, R. Peláez, S. Dueñas and H. Castán, J. Vac. Sci. Technol. A, 17 (1999) 2178. 3) E. Redondo, N. Blanco, I.Mártil and G. González-Díaz, Appl. Phys. Lett., 74 (1999) 991. 4) H. castán, S. Dueñas, J. Barbolla, E. Redondo, N. Blanco, I. Mártil and G. Conzález-Díaz, Microelectron Reliab, 40 (2000) 845. 5) S. García, I.Mártil, G. González-Díaz and M. Fernández, Semicond. Sci. Technol., 12 (1997) 1650. 6) L. He, H. Hasegawa, T. Sawada and H. Ohno, J. Appl. Phys., 63 (1988) 2120. 7) E.H. Nicollian and J.R. Brews, "MOS Physics and Technology", (Wiley, New York, 1982). 8) T. Hashizume, H. Hasegawa, R. Riemenschneider and H.L. Hartnagel, Jpn. J. Appl. Phys., 33 (1994) 727. 9) S. Dueñas, R. Peláez, H. Castán, R. Pinacho, L. Quintanilla, J. Barbolla, I. Mártil and G. González-Díaz, Appl. Phys.Lett., 71 (1997) 826. 10) M. Losurdo, P. Capezzuto, G. Bruno, G. Leo and E.A. Irene, J. Vac. Sci. Technol. A, 17 (1999) 2194. 11) T. Hashizume, Appl. Phys. Lett., 75 (1999) 615. 12) E. Redondo, I. Mártil, G. González-Díaz, H. Castán and S. Dueñas, submitted to J. Vac. Sci. Technol. 13) R. Peláez, H. Castán, S. Dueñas, J. Barbolla, E. Redondo, I. Mártil and G. González-Díaz, J. Appl. Phys., 86 (1999) 6924.
Collections