Publication:
Defect and nanocrystal cathodoluminescence of synthetic opals infilled with Si and Pt

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2001-03-01
Authors
Kurdyukov, D.A.
Piqueras de Noriega, Javier
Sokolov, V. I.
Zamoryanskaya, M. V.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Synthetic opals-composed of 250 nm amorphous silica spheres closed packed in a face centered cubic structure-have been infilled with silicon, platinum, and with Si and different Pt contents. The luminescent properties of these composites have been investigated by cathodoluminescence (CL) microscopy and spectroscopy. CL emission is influenced by the material used to infill the pores of the opal matrix. CL spectra of all the samples investigated show two well-known bands, associated with the defect structure of the silica spheres, centered at about 1.9 and 2.7 eV, respectively. Emission in the 2.15-2.45 eV range, particularly intense in opal-based composites with a high Pt content, is tentatively associated with SiO2 defects involving silicon clusters. A CL band peaked at about 3.4 eV as well as a band in the 1.50-1.75 eV range, whose peak position seems to be affected by the Pt content of the samples, are associated with the presence of Si nanocrystals. The behavior of these emissions suggests that both are related to defect states at the interface between Si nanocrystals and SiO2 forming the opal spheres.
Description
© 2001 American Institute of Physics. This work was supported by DGES ~Project No. PB96-0639!, the Russian R&D program ‘‘Nanostructures’’ (Grant No. 97-2016), and RFBR under Grant No. 98-02-17350.
Unesco subjects
Keywords
Citation
1. Yu. A. Vlasov, V. N. Astratov, O. Z. Karimov, and A. A. Kaplyanskii, Phys. Rev. B 55, R13357 (1997). 2. A. Blanco, C. López, R. Mayoral, H. Míguez, F. Meseguer, A. Mifsud, and J. Herrero, Appl. Phys. Lett. 73, 1781 (1998). 3. S. G. Romanov, A. V. Fokin, and R. M. De La Rue, Appl. Phys. Lett. 74, 1821 (1999). 4. D. L. Griscom, Phys. Rev. B 40, 4224 (1989). 5. M. A. Stevens Kalceff and M. R. Phillips, Phys. Rev. B 52, 3122 (1995). 6. C. Itoh, T. Suzuki, and N. Itoh, Phys. Rev. B 41, 3794 (1990). 7. L. Skuja, J. Non-Cryst. Solids 239, 16 (1998). 8. Y. Kanemitsu, M. Iiboshi, and T. Kushida, Appl. Phys. Lett. 76, 2200 (2000). 9 .J. Piqueras, B. Méndez, R. Plugaru, G. Craciun, J. A. García, and A. Remón, Appl. Phys. A: Mater. Sci. Process. 68, 329 (1999). 10. T. Inokuma, Y. Kurata, and S. Hasegawa, J. Lumin. 80, 247 (1999). 11.W. Stöber, A. Fink, and E. Bohn, J. Colloid Interface Sci. 26, 62 (1968). 12. V. N. Bogomolov, L. S. Parfenieva, A. V. Prokofiev, I. A. Smirnov, S. M. Samoilovich, A. Jezowskii, J. Mucha, and H. Miserek, Phys. Solid State 37, 1874 (1995). 13. V. N. Bogomolov, L. M. Sorokin, D. A. Kurdyukov, T. M. Pavlova, and J. L. Hutchison, Phys. Solid State 39, 1869 (1997). 14. V. N. Bogomolov et al., Tech. Phys. Lett. 24, 326 (1998). 15. N. A. Feoktistov, V. G. Golubev, J. L. Hutchison, D. A. Kurdyukov, A. B. Pevtsov, R. Schwarz, J. Sloan, and L. M. Sorokin, Mat. Res. Soc. Symp. Proc. 609, A24.4.1 (2000). 16. V. N. Bogomolov et al., J. Non-Cryst. Solids 266–269, 1021 (2000). 17. C. Díaz-Guerra and J. Piqueras, Physica C 275, 37 (1997). 18.M. V. Zamoryanskaya and V. I. Sokolov, Phys. Solid State 40, 1797 (1998). 19. L.-S. Liao, X.-M. Bao, X.-Q. Zheng, N.-S. Li, and N.-B. Min, Appl. Phys. Lett. 68, 850 (1996). 20. G. G. Qin, J. Lin, J. Q. Duan, and G. Q. Yao, Appl. Phys. Lett. 69, 1689 (1996). 21. S. Tong, X.-N. Liu, T. Gao, and X.-M. Bao, Appl. Phys. Lett. 71, 698 (1997). 22. H. Z. Song, X. M. Bao, N. S. Li, and X. L. Wu, Appl. Phys. Lett. 72, 356 (1998). 23. M. Ajgaonkar, Y. Zhang, H. Grebel, M. Sosnowski, and D. C. Jacobson, Appl. Phys. Lett. 76, 3876 (2000). 24. H. Imai, K. Araki, and H. Imagawa, Phys. Rev. B 38, 12772 (1988). 25. M. A. Stevens Kalceff, Phys. Rev. B 57, 5674 (1998). 26. D. L. Griscom, J. Appl. Phys. 77, 5008 (1995). 27. X. Liu, J. C. H. Phang, D. S. H. Chan, and W. K. Chim, J. Phys. D 32, 1563 (1999). 28. R. Tohmon, Y. Shimogaichi, H. Mizuno, Y. Ohki, K. Nagasawa, and Y. Hama, Phys. Rev. Lett. 62, 1388 (1989). 29. W. Hayes, M. J. Kane, O. Salminen, R. L. Wood, and S. P. Doherty, J. Phys. C 17, 2943 (1984). 30. M. Watanabe, S. Juodkazis, H. B. Sun, S. Matsuo, and H. Misawa, Phys. Rev. B 60, 9959 (1999). 31. S. Thomas, J. Appl. Phys. 45, 161 (1974). 32. B. Carrie`re and B. Lang, Surf. Sci. 64, 209 (1977). 33. L. N. Skuja, A. R. Silin, and A. G. Boganov, J. Non-Cryst. Solids 63, 431 (1984). 34. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys. 82, 909 (1997). 35. Y. Kanemitsu, Phys. Rev. B 49, 16845 (1994). 36. T. Shimizu-Iwayama, D. E. Hole, and I. W. Boyd, J. Phys.: Condens. Matter 11, 6595 (1999). 37. A. G. Cullis, L. T. Canham, G. M. Williams, P. W. Smith, and O. D. Doser, J. Appl. Phys. 75, 493 (1994). 38. J. Rams, B. Me´ndez, G. Craciun, R. Plugaru, and J. Piqueras, Appl. Phys. Lett. 74, 1728 (1999). 39. J. Rams, R. Plugaru, and J. Piqueras, Mater. Sci. Eng., B 68, 126 (1999). 40. T. Shimizu-Iwayama, N. Kurumado, D. E. Hole, and P. D. Townsend, J. Appl. Phys. 83, 6018 (1998). 41. D. Han, G. Yue, J. D. Lorentzen, and J. Lin, J. Appl. Phys. 87, 1882 (2000.
Collections