Publication:
Reduction of nanofiltration membrane fouling by UV-initiated graft polymerization technique

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2010-06-15
Authors
Abu Seman, M. N.
Bin Ali, Z. I.
Hilal, N.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier B. V.
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Nanofiltration polyethersulfone membrane has been modified by means of UV-initiated graft polymerization technique using the weakly acidic monomer acrylic acid and the immersion method. Different UV-irradiation times and acrylic acid concentrations in water were studied. Both the unmodified and the modified polyethersulfone nanofiltration membranes were characterized by attenuated total reflection-Fourier transform infrared spectra (FTIR-ATR) and atomic force microscopy (AFM). Irreversible membrane fouling has been studied by using humic acid model solutions at two different pH values (7 and 3). It was observed that some modified membranes exhibited higher permeance than the unmodified polyethersulfone nanofiltration membrane. The humic acid rejection factor was higher for all modified membranes compared to the unmodified membrane and the irreversible fouling by humic acid molecules was reduced after UV-initiated graft polymerization by acrylic acid.
Description
© 2010 Elsevier B.V. One of the authors M. Khayet is thankful to the University Complutense of Madrid (UCM) for the grant.
UCM subjects
Keywords
Citation
[1] H. Susanto, M. Ulbricht, High-performance thin-layer hydrogel composite membranes for ultrafiltration of natural organic, Water Res. 42 (2008) 2827–2835. [2] R. Chennamsetty, I. Escobar, Evolution of polysulfone nanofiltration membrane following ion beam irradiation, Langmuir 24 (2008) 5569–5579. [3] T. Caroll, N.A. Booker, J. Meier-Haack, Polyelectrolyte-grafted microfiltration membranes to control fouling by natural organic matter in drinking water, J. Membr. Sci. 203 (2002) 3–13. [4] D. Rana, T. Matsuura, R.M. Narbaitz, C. Feng, Development and characterization of novel hydrophilic surface modifying macromolecule for polymeric membranes, J. Membr. Sci. 249 (2005) 103–112. [5] W. Xi, W. Rong, L. Zhansheng, A.G. Fane, Development of a novel electrophoresis-UV grafting technique to modify PES UF membranes for NOM removal, J. Membr. Sci. 273 (2006) 47–57. [6] M. Taniguchi, J.E. Kilduff, G. Belfort, Low fouling synthetic membranes by UV-assisted graft polymerization: monomer selection to mitigate fouling by natural organic matter, J. Membr. Sci. 222 (2003) 59–70. [7] H. Chen, G. Belfort, Surface modification of poly(ether sulfone) ultrafiltration membranes by low-temperature plasma-induced graft polymerization, J. Appl. Polym. Sci. 72 (1999) 1699–1711. [8] M. Ulbricht, G. Belfort, Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone, J. Membr. Sci. 111 (1996) 193–215. [9] E. Turan, T. Caykara, Swelling and network parameters of pH-sensitive poly(acrylamide-co-acrylic acid) hydrogels, J. Appl. Polym. Sci. 106 (2007) 2000–2007. [10] V. Freger, J. Gilron, S. Belfer, TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study, J. Membr. Sci. 209 (2002) 283–292. [11] H. Susanto, H. Arafat, E.M.L. Janssen, M. Ulbricht, Ultrafiltration of polysaccharide–protein mixtures: elucidation of fouling mechanisms and fouling control by membrane surface modification, Sep. Purif. Technol. 63 (2008) 558–565. [12] A.H.M. Yusof, M. Ulbricht, Polypropylene-based membrane adsorbers via photo-initiated graft copolymerization: optimizing separation performance by preparation conditions, J. Membr. Sci. 311 (2008) 294–305. [13] M. Taniguchi, G. Belfort, Low protein fouling synthetic membranes by UVassisted surface grafting modification: varying monomer type, J. Membr. Sci. 231 (2004) 147–157. [14] J. Pieracci, D.W.Wood, J.V. Crivello, G. Belfort, Increasing membrane permeability of UV-modified poly(ether sulfone) ultrafiltration membranes, J. Membr. Sci. 202 (2002) 1–16. [15] J. Pieracci, D.W. Wood, J.V. Crivello, G. Belfort, UV-assisted graft polymerization of N-vinyl-2-pyrrolidinone onto poly(ether sulfone) ultrafiltration membranes: comparison of dip versus immersion modification techniques, Chem. Mater. 12 (2000) 2123–2133. [16] J. Pieracci, D.W.Wood, J.V. Crivello, G. Belfort, Increasing membrane permeability of UV-modified poly(ether sulfone) ultrafiltration membranes, J. Membr. Sci. 156 (1999) 223–240. [17] C. Qiu, Q.T. Nguyen, Z. Ping, Surface modification of cardo polyetherketone ultrafiltration membrane by photo-grafted copolymers to obtain nanofiltration membranes, J. Membr. Sci. 295 (2007) 88–94. [18] C. Qiu, F. Xu, Q.T. Nguyen, Z. Ping, Nanofiltration membrane prepared b from cardo polyetherketone ultrafiltration membrane by UV-irradiated grafting method, J. Membr. Sci. 255 (2005) 107–115. [19] D.H. Lee, H.I. Kim, S.S. Kim, Surface modification of polymeric membranes by UV grafting, Adv. Mater. Membr. Sep. 876 (2004) 281–299 (Chapter 19. ACS Symposium Series). [20] M. Ulbricht, K. Richau, H. Kamusewitz, Chemically and morphologically defined ultrafiltration membrane surfaces prepared by heterogeneous photo-initiated graft polymerization, Colloids Surf. A: Physicochem. Eng. Aspects 138 (1998) 353–366. [21] H. Yamagishi, J.V. Crivello, G. Belfort, Development of a novel photochemical technique for modifying poly(arylsulfone) ultrafiltration membranes, J. Membr. Sci. 105 (1995) 237–247. [22] H. Yamagishi, J.V. Crivello, G. Belfort, Evaluation of photochemically modified poly(arylsulfone) ultrafiltration membranes, J. Membr. Sci. 105 (1995) 249–259. [23] N. Hilal, L. Al-Khatib, B.P. Atkin, V. Kochkodan, N. Potapchenko, Photochemical modification of membrane surfaces for (bio)fouling reduction: a nano-scale study using AFM, Desalination 158 (2003) 65–72. [24] Y. Uyama, K. Kato, Y. Ikada, Surface modification of polymers by grafting, Adv. Polym. Sci. 137 (1998) 1–39. [25] J.E. Kilduff, S. Mattaraj, J.P. Pieracci, G. Belfort, Photochemical modification of poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration membranes for control of fouling by natural organic matter, Desalination 132 (2000) 133– 142. [26] S. Kuroda, et al., Degradation of aromatic polymers. Part IV. Effect of temperature and light intensity on the photodegradation of polyethersulfone, Polym. Deg. Stabil. 27 (1990) 257–270. [27] B. Kaeselev, P. Kingshott, G. Jonsson, Influence of the surface structure on the filtration performance of UV-modified PES membranes, Desalination 146 (2002) 265–271. [28] J. Ji, Fabrication and photochemical surface modification of photoreactive thinfilm composite membranes and model development for thin film formation by interfacial polymerisation, PhD thesis, Mc Master University, Canada, 1996. [29] M. Ulbricht, Photograft-polymer-modified microporous membranes with environment-sensitive permeabilities, React. Funct. Polym. 31 (1996) 165–177. [30] L. Puro, M. Mänttäri, A. Pihlajamaki, M. Nyström, Characterization of modified nanofiltration membrane by octanoic acid permeation and FTIR analysis, Trans. IChemE A: Chem. Eng. Res. Des. 84 (A2) (2006) 87–96. [31] Y.P. Chin, G. Aiken, E. O’Loughlin, Molecular weight, polydispersity and spectroscopic properties of aquatic humic substances, Environ. Sci. Technol. 28 (1994) 1853–1858. [32] http://en.wikipedia.org/wiki/Attenuated total reflectance. [33] N. Hilal, W.R. Bowen, L. Al-khatib, O. Ogunbiyi, A review of atomic microscopy applied to cell interactions with membrane, Trans. IChemE A: Chem. Eng. Res. Des. 84 (A4) (2006) 282–292. [34] W.R. Bowen, N. Hilal, R.W. Lovitt, C.J. Wright, Characterisation of membrane surfaces: direct measurement of biological adhesion using an atomic force microscope, J. Membr. Sci. 154 (1999) 205–212. [35] M. Mänttäri, L. Puro, J. Nuortila-Jokinen, M. Nyström, Fouling effects of polysaccharides and humic acid in nanofiltration, J. Membr. Sci. 165 (2000) 1–17. [36] M. Mänttäri, M. Nyström, Critical flux in NF of high molar mass polysaccharides and effluents from the paper industry, J. Membr. Sci. 170 (2000) 257–273. [37] H.Y. Yu, Z.K. Xu, Q. Yang, M.X. Hu, S.Y. Wang, Improvement of the antifouling characteristics for polypropylene microporous membranes by the sequential photoinduced graft polymerization of acrylic acid, J. Membr. Sci. 281 (2006) 658–665. [38] H.Y. Yu, J.M. He, L.Q. Liu, X.C. He, J.S. Gu, X.W. Wei, Photoinduced graft polymerization to improve antifouling characteristics of an SMBR, J. Membr. Sci. 302 (2007) 235–242. [39] http://cfpub.epa.gov/ncerabstracts/index.cfm/fuseaction/display.abstractDetail/abstract/6236/report/2004. [40] M. Elimelech, X. Zhu, A.E. Childress, S. Hong, Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes, J. Membr. Sci. 127 (1997) 101–109. [41] K. Ghosh, M. Schnitzer, Macromolecular structures of humic substances, Soil. Sci. 129 (5) (1980) 266–276.
Collections