Publication:
Concentration of olive mill wastewater by membrane distillation for polyphenols recovery

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-09-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science Bv
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The possibility of olive mill wastewaters (OMW) treatment and concentration by membrane distillation has been investigated. The objective is to obtain pure water and a concentrate containing high amounts of polyphenols, which can be extracted later. Two types of commercial membranes, polytetrafluoroethylene (TF200) and polyvinilydene fluoride (GVHP), were tested and the effects of membrane parameters on direct contact membrane distillation (DCMD) performance (i.e. permeate flux and polyphenols retention) were studied. The effects of different DCMD operating parameters were also investigated. The obtained results demonstrated the efficiency of DCMD for OMW treatment and concentration. The membrane TF200 showed a better separation coefficient (99%) after 9 h of DCMD operation than the membrane GVHP (89%) and the corresponding OMW concentration factor was found to be 1.72 for the membrane TF200, whereas it was only 1.4 for the GVHP membrane after 9 h operating time.
Description
Engineering with Membranes Conference (2008. Vale do Lobo, Algarve, Portugal). © 2009 Published by Elsevier BV. The authors of the present study gratefully acknowledge the financial support of AECI (Agencia Española de Cooperación Internacional, Ministerio de Asuntos Exteriores y de Cooperación) through the projects A/4103/05 and A6209/06.
UCM subjects
Unesco subjects
Keywords
Citation
[1] C.A. Paraskeva, V.G. Papadakis, E. Tsarouchi, D.G. Kanellopoulou and P.G. Koutsoukos, Membrane processing for olive mill wastewater fractionation, Desalination, 213 (2007) 218–229. [2] H. Chimi, M. Rahmani, J. Cillard and P. Cillard, Autooxydation des huiles d’olive: Rôle des composes phénoliques, Rev. Franç. Corps Gras, 37 (1990) 363–367. [3] K.L. Tuck and P.J. Hayball, Major phenolic compounds in olive oil: metabolism and health effects, J. Nutr. Biochem., 13 (2002) 636–644. [4] J. Fernández Bolaños, G. Rodríguez, R. Rodríguez, A. Heredia, R. Guillén and A. Jiménez, Production in large quantities of highly purified hydroxytyrosol from liquid-solid waste of two-phase olive oil processing or “alperujo”, J. Agric. Food Chem., 50 (2002) 6804–6811. [5] M.S. El-Bourawi, Z. Ding, R. Ma and M. Khayet, A framework for better understanding membrane distillation separation process, J. Membr. Sci., 285 (2006) 4–29. [6] M. Khayet, M.P. Godino and J.I. Mengual, Modelling transport mechanism through a porous partition, J. Non-Equilib. Thermodyn., 26 (2001) 1–14. [7] M. Khayet, M.P. Godino and J.I. Mengual, Study of asymmetric polarization in direct contact membrane distillation, Sep. Sci. & Tech., 39 (2004) 125–147. [8] Centre d’Expertise en Analyse Environnementale du Québec CEAEQ, Détermination des composes phénoliques (indice phénol): méthode colorimétrique automatisée avec l’amino-4 antipyrine, MA. 404 – I.Phé. 2.1, Rév. 1, Ministre du Développement Durable de l’Environnement et des Parcs du Québec, 2006. [9] G. Aubert, Méthodes d'Analyses des Sols, C.R.D.P., Marseille. 1978. [10] M.M. Bradford, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding, Analyt. Biochem., 72 (1976) 248–254. [11] O. Folin and V. Ciocalteu, On tyrosine and tryptophane determinations in proteins, J. Biol. Chem., 73 (1927) 627–650. [12] V.L. Singleton and J. Rossi, Colorimetry of total phenolics with phosphomolybdic and phosphotungstic acid reagents, Am. J. Enology Viticulture, 16 (1965) 144–158. [13] American Public Health Association, Standard Methods for the Examination of Water and Wastewater, 15th ed., Washington, DC, 1981. [14] M. Khayet, A. Velázquez and J.I. Mengual, Modelling mass transport through a porous partition: Effect of pore size distribution, J. Non-Equilib. Thermodyn., 29 (2004) 279–299. [15] R.T.P. Pinto, L. Lintomen, L.F.L. Luz and M.R. Wolf-Maciel, Strategies for recovering phenol from wastewater: thermodynamic evaluation and environmental concerns, Fluid Phase Equilibria, 228– 229 (2005) 447–457. [16] M. Gryta, M. Tomaszewska, J. Grzechulska and A.W. Morawski, Membrane distillation of NaCl solution containing natural organic matter, J. Membr. Sci., 181 (2001) 279–287. [17] M. Khayet, A. Velázquez and J.I. Mengual, Direct contact membrane distillation of humic acid solutions, J. Membr. Sci., 240 (2004) 123–128. [18] M. Khayet and J.I. Mengual, Effect of salt concentration during the treatment of humic acid solutions by membrane distillation, Desalination, 168 (2004) 373–381. [19] M. Gryta, Effect of iron oxides scaling on the MD process performance, Desalination, 216 (2007) 88–102.
Collections