Pajares Martinsanz, Gonzalo y Cruz García, Jesús Manuel de la (2000) A new learning strategy for stereo matching derived from a fuzzy clustering method. Fuzzy Sets and Systems, 110 (3). pp. 413-427. ISSN 0165-0114
![]() |
PDF
Restringido a Sólo personal autorizado del repositorio hasta 31 Diciembre 2020. 1MB |
URL Oficial: http://dx.doi.org/10.1016/S0165-0114(97)00382-5
URL | Tipo de URL |
---|---|
http://www.sciencedirect.com/ | Editorial |
Resumen
This paper presents an approach to the local stereo correspondence problem. The primitives or features used are groups of collinear connected edge points called segments. Each segment has several associated attributes or properties. We have verified that the differences of the attributes for the true matches cluster in a cloud around a center. Then for each current pair of primitives we compute a distance between the difference of its attributes and the cluster center. The correspondence is established in the basis of the minimum distance criterion (similarity constraint). We have designed an image understanding system to learn the best representative cluster center. For such purpose a new learning method is derived from the Fuzzy c-Means (FcM) algorithm where the dispersion of the true samples in the cluster is taken into account through the Mahalanobis distance. This is the main contribution of this paper. A better performance of the proposed local stereo-matching learning method is illustrated with a comparative analysis between classical local methods without learning.
Tipo de documento: | Artículo |
---|---|
Información Adicional: | © Elsevier Science BV. |
Palabras clave: | C-Means, Neural Networks, Criterion, Disparity, Images |
Materias: | Ciencias > Informática |
Código ID: | 26386 |
Depositado: | 11 Sep 2014 09:26 |
Última Modificación: | 11 Sep 2014 09:26 |
Descargas en el último año
Sólo personal del repositorio: página de control del artículo