Publication:
Measurement of the thermal conductivity of nanofluids by the multicurrent hot-wire method

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-08-15
Authors
Vázquez Peñas, José R.
Ortiz de Zárate Leira, José María
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present experimental results of the thermal conductivity of several nanofluids prepared by dispersing nanoparticles of SiO(2) and CuO in water and ethylene glycol at various concentrations up to approximate to 5% in mass fraction. The measurements have been performed by the multicurrent hot-wire technique. Good agreement, within 2%, is found in recommended and published thermal conductivities of the pure fluids. Our experimental technique allows a very accurate determination of the enhancement in the thermal conductivity of the fluids due to the presence of dispersed nanoparticles. Measured enhancements compare well with some of the values published so far in the literature. We have compared our results with simple theoretical models that predict the thermal conductivity of solid suspensions and found that in some cases observed enhancements are several times larger than the predicted ones.
Description
© 2008 American Institute of Physics. We have greatly appreciated stimulating discussions with Manuel M. Piñeiro from the University of Vigo (Spain). We are also indebted to the Spanish Ministerio de Educación y Ciencia (Contract No. FIS2006-05323) for supporting this research.
UCM subjects
Unesco subjects
Keywords
Citation
[1] J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, Appl. Phys. Lett. 78, 718 (2001). [2] J. A. Eastman, S. U. S. Choi, S. Li, L. J. Thompson, and S. Lee, in Materials Research Society Symposium Proceedings No. 457 (Materials Research Society, Pittsburg, PA, 1997), pp. 3–11. [3] S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, J. Heat Transfer 125, 567 (2003). [4] S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, J. Heat Transfer 121, 280 (1999). [5] K. Kwak and C. Kim, Korea-Aust. Rheol. J. 17, 35 (2005). [6] H. E. Patel, S. K. Das, T. Sundararajan, A. S. Nair, B. George, and T. Pradeep, Appl. Phys. Lett. 83, 2931 (2003). [7] T.-K. Hong, H.-S. Yang, and C. J. Choi, J. Appl. Phys. 97, 064311 (2005). [8] Y. Xuan and Q. Li, Int. J. Heat Fluid Flow 21, 58 (2000). [9] J. C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed. (Clarendon, Oxford, 1881). [10] C. H. Li and G. P. Peterson, J. Appl. Phys. 99, 084314 (2006). [11] K. S. Gandhi, Curr. Sci. 6, 717 (2007). [12] P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, Int. J. Heat Mass Transfer 45, 855 (2002). [13] D. H. Kumar, H. E. Patel, V. R. R. Kumar, T. Sundararajan, T. Pradeep, and S. K. Das, Phys. Rev. Lett. 93, 144301 (2004). [14] P. Vadasz, Trans. ASME, Ser. C: J. Heat Transfer 128, 465 (2006). [15] S. P. Jang and S. U. S. Choi, Appl. Phys. Lett. 84, 4316 (2004). [16] Y. Xuan, Q. Li, and W. Hu, AIChE J. 49, 1038 (2003). [17] J. Eapen, J. Li, and S. Yip, Phys. Rev. E 76, 062501 (2007). [18] X.-Q. Wang and A. S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007). [19] M. M. Piñeiro, personal communication (October 9, 2007). [20] Y. Hwang, J. K. Lee, C. H. Lee, Y. M. Jung, S. I. Cheong, C. G. Lee, B. Ku, and S. P. Jang, Thermochim. Acta 455, 70 (2007). [21] Y. Nagasaka and A. Nagashima, Rev. Sci. Instrum. 52, 229 (1981). [22] M. J. Assael, E. Charitidou, C. Nieto de Castro, and W. Wakeham, Int. J. Thermophys. 8, 663 (1987). [23] M. Khayet and J. M. Ortiz de Zárate, Int. J. Thermophys. 26, 637 (2005). [24] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, Oxford, 1959). [25] J. Kestin and W. A. Wakeham, Physica A 92, 102 (1978). [26] M. J. Assael, K. D. Antoniadis, K. E. Kakosimos, and I. N. Metaxa, Int. J. Thermophys. 29, 445 (2008). [27] C. A. Nieto de Castro, R. Perkins, and H. M. Roder, Int. J. Thermophys. 12, 985 (1991). [28] M. J. Assael, L. Karagiannidis, S. M. Richardson, and W. A. Wakeham, Int. J. Thermophys. 13, 223 (1992). [29] R. L. Hamilton and O. K. Crosser, Ind. Eng. Chem. Fundam. 1, 187 (1962). [30] M. J. Assael, E. Charatidou, S. Augustinianus, and W. A. Wakeham, Int. J. Thermophys. 10, 1127 (1989). [31] D. Bohne, S. Fischer, and E. Obermeier, Ber. Bunsenges. Phys. Chem. 88, 739 (1984). [32] R. DiGuilio and A. S. Teja, J. Chem. Eng. Data 35, 117 (1990).
Collections