Publication:
Cosmological evolution in vector-tensor theories of gravity

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-09
Authors
Beltrán Jiménez, José
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Physical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present a detailed study of the cosmological evolution in general vector-tensor theories of gravity without potential terms. We consider the evolution of the vector field throughout the expansion history of the Universe and carry out a classification of models according to the behavior of the vector field in each cosmological epoch. We also analyze the case in which the Universe is dominated by the vector field, performing a complete analysis of the system phase map and identifying those attracting solutions which give rise to accelerated expansion. Moreover, we consider the evolution in a universe filled with a pressureless fluid in addition to the vector field and study the existence of attractors in which we can have a transition from matter domination to vector domination with accelerated expansion so that the vector field may play the role of dark energy. We find that the existence of solutions with late-time accelerated expansion is a generic prediction of vector tensor theories and that such solutions typically lead to the presence of future singularities. Finally, limits from local gravity tests are used to get constraints on the value of the vector field at small (Solar System) scales.
Description
© 2009 The American Physical Society. This work has been supported by Ministerio de Ciencia e Innovacion (Spain) Project Nos. FIS 2008-01323 and FPA 2008 00592, UCM-Santander PR34/07-15875, and UCM-BSCH GR58/08910309 and MEC Grant No. BES-200612059.
Unesco subjects
Keywords
Citation
[1] A. G. Riess et al., Astron. J. 116, 1009 (1998); S. Perlmutter et al., Astrophys. J. 517, 565 (1999). [2] A. G. Riess et al., Astrophys. J. 607, 665 (2004); M. Kowalski et al., Astrophys. J. 686, 749 (2008). [3] D. N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175 (2003); D. N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007); M. Tegmark et al., Phys. Rev. D 69, 103501 (2004). [4] C. Wetterich, Nucl. Phys. B302, 668 (1988); R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998); C. Armendariz-Picon, T. Damour, and V. Mukhanov, Phys. Lett. B 458, 209 (1999). [5] G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485, 208 (2000); S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner, Phys. Rev. D 70, 043528 (2004). [6] C. M. Will and K. Nordtvedt, Jr., Astrophys. J. 177, 757 (1972); K. Nordtvedt, Jr. and C. M. Will, Astrophys. J. 177, 775 (1972); R.W. Hellings and K. Nordtvedt, Jr., Phys. Rev. D 7, 3593 (1973). [7] J. Beltrán Jiménez and A. L. Maroto, J. Cosmol. Astropart. Phys. 02 (2009) 025. [8] C. Armendariz-Picon and A. Diez-Tejedor, arXiv:0904.0809. [9] V. A. Kostelecky and S. Samuel, Phys. Rev. D 40, 1886 (1989); C. Eling, T. Jacobson, and D. Mattingly, arXiv:grqc/ 0410001; R. Bluhm and V. A. Kostelecky, Phys. Rev. D 71, 065008 (2005); Q. G. Bailey and V. A. Kostelecky, Phys. Rev. D 74, 045001 (2006); R. Bluhm, S. H. Fung, and V. A. Kostelecky, Phys. Rev. D 77, 065020 (2008); R. Bluhm, N. L. Gagne, R. Potting, and A. Vrublevskis, Phys. Rev. D 77, 125007 (2008). [10] C. Eling, Phys. Rev. D 73, 084026 (2006); S. M. Carroll, T. R. Dulaney, M. I. Gresham, and H. Tam Phys. Rev. D 79, 065011 (2009); 79, 065012 (2009). [11] C. Armendariz-Picon, J. Cosmol. Astropart. Phys. 07 (2004) 007; C. G. Boehmer and T. Harko, Eur. Phys. J. C 50, 423 (2007); M. Novello et al., Phys. Rev. D 69, 127301 (2004); V.V. Kiselev, Classical Quantum Gravity 21, 3323 (2004); H. S. Zhao, Astrophys. J. 671, L1 (2007); K. Bamba, S. Nojiri, and S. D. Odintsov,Phys. Rev. D 77, 123532 (2008). [12] J. Beltrán Jiménez and A. L. Maroto, Phys. Rev. D 78, 063005 (2008); arXiv:0807.2528; J. Beltrán Jiménez, Ruth Lazkoz, and A. L. Maroto, arXiv:0904.0433. [13] J. Beltrán Jiménez and A. L. Maroto, J. Cosmol. Astropart. Phys. 03 (2009) 016; AIP Conf. Proc. 1122, 107 (2009); J. Beltrán Jiménez and A. L. Maroto, arXiv:0903.4672. [14] L. H. Ford, Phys. Rev. D 40, 967 (1989); A. Golovnev, V. Mukhanov, and V. Vanchurin, J. Cosmol. Astropart. Phys. 06 (2008) 009; T. Koivisto and D. F. Mota, J. Cosmol. Astropart. Phys. 08 (2008) 021; S. Kanno and J. Soda, Phys. Rev. D 74, 063505 (2006); M. A. Watanabe, S. Kanno, and J. Soda, Phys. Rev. Lett. 102, 191302 (2009). [15] M. Novello and S. E. Perez Bergliaffa, Phys. Rep. 463, 127 (2008). [16] J. D. Bekenstein, Phys. Rev. D 70, 083509 (2004); T. G. Zlosnik, P. G. Ferreira, and G. D. Starkman, Phys. Rev. D 75, 044017 (2007). [17] T. Koivisto and D. F. Mota, Astrophys. J. 679, 1 (2008); S. Kanno, M. Kimura, J. Soda, and S. Yokoyama, J. Cosmol. Astropart. Phys. 08 2008 034 [18] C. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, England, 1993); C. M. Will, Living Rev. Relativity 9, 3 (2006), http:// www.livingreviews.org/lrr-2006-3. [19] T. Koivisto and D. F. Mota, J. Cosmol. Astropart. Phys. 06 (2008) 018. [20] A. L. Maroto, J. Cosmol. Astropart. Phys. 05 (2006) 015; A. L. Maroto, Int. J. Mod. Phys. D 15, 2165 (2006); AIP Conf. Proc. 878, 240 (2006); J. Beltran Jimenez and A. L. Maroto, Phys. Rev. D 76, 023003 (2007). [21] A. Kashlinsky, F. Atrio-Barandela, D. Kocevski, and H. Ebeling, Astrophys. J. 691, 1479 (2009); arXiv:0809.3734; R. Watkins, H. A. Feldman, and M. J. Hudson, arXiv:08094041. [22] J. D. Barrow, Phys. Rev. D 55, 7451 (1997); J. D. Barrow and R. Marteens, Phys. Rev. D 59, 043502 (1998). [23] B. Himmetoglu, C. R. Contaldi, and M. Peloso, Phys. Rev. Lett. 102, 111301 (2009); Phys. Rev. D 79, 063517 (2009). [24] T. S. Koivisto, D. F. Mota, and C. Pitrou, arXiv:0903.4158 [Astrophys. J. (to be published)
Collections