Publication:
Talbot effect in metallic gratings under Gaussian illumination

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2007-10-01
Authors
Torcal Milla, Francisco José
Bernabeu Martínez, Eusebio
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Metallic gratings can be found in applications such as optical metrology. Due to their fabrication process, the surface presents a certain roughness. In this work, the effect of roughness on Talbot effect has been analyzed when the grating is illuminated with a Gaussian beam. A model based on Fresnel regime is used in order to determine the intensity distribution in the near field. Contrast of the self-images is obtained and it is found that it decreases in terms of the distance between the grating and the observation plane. When the autocorrelation function of roughness presents a Gaussian behaviour, the diffracted beams are still Gaussian although some of their properties change. For example, the width of the diffracted beams increases with respect to the case of the standard chrome on glass gratings. On the other hand, the power of each diffracted beam is independent on the roughness properties of the surface.
Description
© 2007 Elsevier B.V. This work has been supported by the DPI2005-02860 project of the Ministerio de Educación y Ciencia of Spain and the “Tecnologías en ecología, alta precisión y productividad, multifuncionalidad, y tecnologías de la información y comunicaciones en Máquina Herramienta” CENIT project of the Ministerio de Industria, turismo y comercio. Sánchez-Brea is currently contracted by the Universidad Complutense de Madrid under the “Ramón y Cajal” research program of the Ministerio de Educación y Ciencia of Spain.
Keywords
Citation
[1] W.H.F. Talbot, Philos. Mag. 9 (1836) 401. [2] K. Patorski, Prog. Optics 27 (1989) 1. [3] E. Keren, O. Kafri, J. Opt. Soc. Am. A 2 (2) (1985) 111. [4] A.W. Lohmann, D.E. Silva, Opt. Commun. 2 (1971) 413. [5] G. Schirripa Spagnolo, D. Ambrosini, D. Paoletti, J. Opt. A: Pure Appl. Opt. 4 (2002) S376. [6] B.F. Oreb, R.G. Dorsch, Appl. Opt. 33 (1994) 7955. [7] S. Wei, S. Wu, I. Kao, F.P. Chiang, Trans. ASME J. Electron. Packag. 120 (1998) 166. [8] S. Szapiel, K. Patorski, Opt. Acta 26 (4) (1979) 439. [9] P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, Artech House, 1987. [10] J.W. Goodman, Statistical Optics, John Wiley & Sons, New York, 1985. [11] J.C. Dainty, Laser Speckle and Related Phenomena, Springer-Verlag, 1984. [12] J.A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces, IOP, 1991. [13] F. Pérez-Quintián, A. Lutenberg, M.A. Rebollo, Appl. Opt. 45 (20) (2006) 4821. [14] V.Ya. Mendeleev, S.N. Skovorod’ko, Optics and Spectroscopy 94 (3) (2003) 437. [15] V. Celli, A.A. Maradudin, A.M. Marvin, A.R. McGurn, J. Opt. Soc. Am. A 2 (12) (1985) 2225. [16] B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, John Wiley & Sons, 1991.
Collections