Publication:
Near band gap photoreflectance studies in CdTe, CdTe:V and CdTe:Ge crystals

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1996-12-15
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science Sa
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The contactless modulation spectroscopy technique of photoreflectance (PR) has been used to study the near band edge transitions in CdTe, CdTe:V and CdTe:Ge bulk crystals in the range of 14 and 400 K for the first time. The lineshape of the PR spectra for the crystals is seen to follow the third derivative functional form (TDFF) of electrorefiectance (ER) in the low field limit. Using the line shape analysis of the spectra at different temperatures, the variation of band gap (E_0), phase factor (β) and energy broadening parameter (I?) with temperature are studied. The temperature variation of band gap for these crystals is seen to follow the Varshni relation with coefficient values α = 4.357 x 10^(-4) eV K^(-l) , β= 183.4 K for undoped, α = 4.635 x 1O^(-4) eV K^(- I), β = 184.5 K for vanadium-doped and α = 4.508 x 10^(-4) eV K^(- 1) β = 230.5 K for Ge doped crystals. The Varshni relation is found to be valid for the whole range of temperature studied for undoped and Ge-doped crystals, where as for V-doped crystals, Varshni relation is valid upto about 250 K. Effects of vanadium and germanium doping on the energy broadening parameter in CdTe are discussed.
Description
© 196-Elsevier Science S.A. All rights reserved. International Workshop on Beam Injection Assessment of Defects in Semiconductors (4. 1996. El Escorial, España). U. Pal thanks CONACyT for the financial support and the Catedra patrimonial (No. 481100-l-940460). This work is partially supported by the CONACyT grants (Project No. 1561-E9207).
Unesco subjects
Keywords
Citation
[1]. D.E. Aspnes, in TX Moss (ed.), Hancibook on Semicomhxtom, Vol. 2, North Holland, New York, 1980, p. 109. [2]. B.O. Seraphin, in R.K. Willardson and A.C. Beer (eds.), Semiconductors and Semimetals, Vol. 9, Academic, New York, 1972, p. 1. [3]. R.N. Bhattacharya, H. Shen, P. Parayanthal, F.H. Pollak, T. Coutts and H. Aharoni, Proc. Sot. Photo-Opt. Instrum. Eng., 794 (1987) 81; Phys. Rev., 337 (1988) 4044. [4]. H. Shen, S.H. Pan, P.H. Pollak, M. Dutta and T.R. Aucoin, Phys. Rev., B36 (1987) 9384. [5]. O.J. Glembocki, B.V. Shanabrook, N. Bottka, W.T. Beard and J. Coman, Appl. Phys. Lett., 45 (1985) 970. [6]. J.L. Shay, Phys. Rev., BZ (1970) 803. [7]. R.B. Bylsma, P.M. Bridenbaugh, D.H. Olson and A.M. Glass, Appl. Phys. Lett., 51 (1987) 889. [8]. E. Rzepka, Y. Marfaing, M. Cuniot and R. Triboulet, Muter. Sci. Eng., B16 (1993) 262. [9]. A. Partovi, J. Millerd, E.M. Garmire, M. Ziari, W.H. Steier, S.B. Trivedi and M.B. Klein, Appl. Phys. Lett., 57 (1990) 846. [10]. P. Moravec, M. Hage-Ali, L. Chibani and P. Siffert, Mnter. Sci. Eng., B16 (1993) 223. [11]. D. Aspnes, SU$ Sci., 37 (1973) 418. [12]. F.H. Pollak, in D.E. Aspnes, S. So and R.F. Potter (eds.) Optical Characterization for Semiconductor Technology, Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, 1981; Proc. Sot. Photo. Opt. Inst. Eng., 276 (1981) 142. [13]. M. Sydor, J. Angelo, J.J. W&on, W.C. Mitchel and M.Y. Yen, Phys. Rev., B40 (1989) 8473. [14]. Y.P. Varshni, Physica (t&e&t), 34 (1967) 149. [15]. A. Muranevich, M. Roitberg and E. Finkman, J. Crysr. GTowth, 64 (1983) 285. [16]. D.T.F. Marple, Phys. Rev., 150 (1966) 728. [18]. B.O. Seraphin and N. Bottka, Phys. Rev., 145 (1966) 828. [19]. D.F. Blossey, Phys. Rev., B3 (1971) 1382. [20]. W. Stadler, D.M. Hofmann, H.C. Alt, T. Muschik, B.K. Meyer, E. Weigel, G. Muller-Vogt, M. Slak, E. Rupp and K.W. Benz, Phys. Rev., B51 (1995) 10619. [21]. U. Pal, J. Piqueras, P. Fernandez, M.D. Serrano and E. Dieguez, J. Appl. Phys. 76 (1994) 3720. [22] W.S. Enloe, J.C. Parker, J. Vespoli, T.H. Myers, R.L. Harper and J.F. Schetzina, J. Appi. Phys., 61 (1987) 2005. [23] Jaesun Lee and N.C. Giles, J. Appl. Phys., 78 (1995) 1191.
Collections