Publication:
Rapid thermal annealing effects on the structural properties and density of defects in SiO2 and SiNx : H films deposited by electron cyclotron resonance

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2000-02-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The effect of rapid thermal annealing processes on the properties of SiO2.0 and SiN1.55 films was studied. The films were deposited at room temperature from N-2 and SiH4 gas mixtures, and N-2, O-2, and SiH4 gas mixtures, respectively, using the electron cyclotron resonance technique. The films were characterized by Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance spectroscopy. According to the FTIR characterization, the SiO2.0 films show continuous stress relaxation for annealing temperatures between 600 and 1000 degrees C. The properties of the films annealed at 900-1000 degrees C are comparable to those of thermally grown ones. The density of defects shows a minimum value for annealing temperatures around 300-400 degrees C, which is tentatively attributed to the passivation of the well-known E' center Si dangling bonds due to the formation of Si-H bonds. A very low density of defects (5 x 10(16) cm(-3)) is observed over the whole annealing temperature range. For the SiN1.55 films, the highest structural order is achieved for annealing temperatures of 900 degrees C. For higher temperatures, there is a significant release of H from N-H bonds without any subsequent Si-N bond healing, which results in degradation of the structural properties of the film. A minimum in the density of defects is observed for annealing temperatures of 600 degrees C. The behavior of the density of defects is governed by the presence of non-bonded H and Si-H bonds below the IR detection limit. (C) 2000 American Institute of Physics. [S0021-8979(00)05903-X].
Description
© American Institute of Physics. The authors acknowledge C. A. I. de Implantación Iónica (U. C. M.) for technical support and C. A. I. de Espectroscopía (U. C. M.) for availability of the FTIR spectrometer. The work has been financed by the CICYT (Spain) under Contract No. TIC 98/0740.
Unesco subjects
Keywords
Citation
1) Y. Ma and G. Lukovsky, J. Vac. Sci. Technol. B 12, 2504 (1994). 2) Y. Ma, T. Yasuda, and G. Lukovsky, J. Vac. Sci. Technol. B 11, 1533 (1993). 3) D. Landheer, Y. Tao, J. E. Hulse, T. Quance, and D.-X. Xu, J. Electrochem. Soc. 143, 1681 (1996). 4) S. V. Hattangady, H. Niimi, and G. Lucovsky, J. Vac. Sci. Technol. A 14, 3017 (1996). 5) E. Redondo, N. Blanco, I. Mártil, and G. González-Díaz, Appl. Phys. Lett. 74, 991 (1999). 6) D. G. Park, M. Tao, D. Li, A. E. Botchkarev, Z. Fan, Z. Wang, S. N. Mohammad, A. Rockett, J. R. Abelson, H. Morkoc¸, A. R. Heyd, and S. A. Alterovitz, J. Vac. Sci. Technol. B 14, 2674 (1996). 7) P. K. Shufflebotham, D. J. Thomson, and H. C. Card, J. Appl. Phys. 64, 4398 (1988). 8) A. Popov, J. Vac. Sci. Technol. A 7, 894 (1989). 9) T. T. Chau, S. R. Mejia, and K. C. Kao, J. Vac. Sci. Technol. B 10, 2170 (1992). 10) F. L. Martínez, Á. del Prado, D. Bravo, F. López, I. Mártil, and G. González-Díaz, J. Vac. Sci. Technol. A 17, 1280 (1999). 11) G. Lucovsky, H. Niimi, Y. Wu, C. R. Parker, and J. R. Hauser, J. Vac. Sci. Technol. A 16, 1721 (1998). 12) D. Landheer, J. E. Hulse, and T. Quance, Thin Solid Films 293, 52 (1997). 13) N. Bhat, A. W. Wang, and K. C. Saraswat, IEEE Trans. Electron Devices 46, 63 (1999). 14) A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, and L. Zanotti, J. Vac. Sci. Technol. A 15, 377 (1997). 15) W. L. Warren, J. Kanicki, F. C. Rong, and E. H. Poindexter, J. Electrochem. Soc. 139, 880 (1992). 16) W. L. Warren, E. H. Poindexter, M. Offenberg, W. Müller-Warmuth, J. Electrochem. Soc. 139, 872 (1992). 17) E. H. Poindexter, G. J. Gerardi, M.-E. Rueckel, P. J. Caplan, N. M. Johnson, and D. K. Biegelsen, J. Appl. Phys. 56, 2844 (1984). 18) S. García, J. M. Martín, M. Fernández, I. Mártil, and G. González-Dıíz, Philos. Mag. B 73, 487 (1996). 19) F. L. Martínez, I. Mártil, G. González-Díaz, B. Selle, and I. Sieber, J. Non-Cryst. Solids 227-230, 523 (1998). 20) Á. del Prado, I. Mártil, M. Fernández, and G. González-Díaz, Thin Solid Films 343–344, 432 (1999). 21) W. A. Lanford and M. J. Rand, J. Appl. Phys. 49, 2473 (1978). 22) P. G. Pai, S. S. Chao, Y. Takagi, and G. Lucovski, J. Vac. Sci. Technol. A 4, 689 (1986). 23) B.-R. Zhang, Z. Yu, G. J. Collins, T. Hwang, and W. H. Ritchic, J. Vac. Sci. Technol. A 7, 176 (1989). 24) T. V. Herak, T. T. Chau, D. J. Thomson, S. R. Mejia, D. A. Buchanan, and K. C. Kao, J. Appl. Phys. 65, 2457 (1989). 25) J. T. Fitch, S. S. Kim, and G. Lucovsky, J. Vac. Sci. Technol. A 8, 1871 (1990). 26) W. K. Choi, C. K. Choo, and Y. F. Lu, J. Appl. Phys. 80, 5837 (1996). 27) Á. del Prado, F. L. Martínez, M. Fernández, I. Mártil, and G. González-Díaz, J. Vac. Sci. Technol. A 17, 1263 (1999). 28) D. V. Tsu, G. Lucovsky, and M. J. Mantini, Phys. Rev. B 33, 7069 (1986). 29) Z. Lu, P. Santos-Filho, G. Stevens, M. J. Williams, and G. Lucovsky, J. Vac. Sci. Technol. A 13, 607 (1995). 30) R. C. Budhani, R. F. Bunshah, and P. A. Flinn, Appl. Phys. Lett. 52, 284 (1988). 31) S. García, D. Bravo, M. Fernández, I. Mártil, and F. J. López, Appl. Phys. Lett. 67, 3263 (1995). 32) D. Jousse, J. Kanicki, D. T. Krick, and P. M. Lenahan, Appl. Phys. Lett. 52, 445 (1988). 33) J. K. Cramer and S. P. Murarka, J. Appl. Phys. 77, 3048 (1995).
Collections