Publication:
Gate quality of ex situ deposited Al/SiNx : H/n-In0.53Ga0.47As devices after rapid thermal annealing

Loading...
Thumbnail Image
Full text at PDC
Publication Date
1999-07
Authors
Mártil de la Plaza, Ignacio
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Iop Publishing Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Ex situ deposited SiNx:H/In0.53Ga0.47As metal-insulator-semiconductor devices, with a minimum of interface state density of 3.5 x 10(11) eV(-1) cm(-2) have been obtained by electron cyclotron resonance plasma method at a low substrate temperature (200 degrees C), after a rapid thermal annealing treatment. The effects of annealing temperature on interfacial and bull; electrical properties have been analysed using the C-V high-low frequency method and I-V measurements. The results show that, up to 600 degrees C, the annealing procedure gradually improves the interface properties of the devices. The frequency dispersion, the hysteresis and the interface trap density diminish, while the resistivity and the electrical breakdown field of the insulator film increase up to values of 8 x 10(15)Omega cm and 4 MV cm(-1), respectively. We explain this behaviour in terms of the thermal relaxation and the reconstruction of the SiNx:H lattice and its interface with the In0.53Ga0.47As. At higher annealing temperatures, a sharp degradation of the structure occurs.
Description
© IOP Publishing Ltd. The authors would like to acknowledge the technical assistance of CAI de Implantación Iónica from the Universidad Complutense of Madrid. This research was partially supported by the Spanish CYCIT under grant TIC 98-0740.
Unesco subjects
Keywords
Citation
[1] Hasegawa, H., Akazawa, M., Ishii, H., Uraie, A., Iwadate, H. and Ohue, E., 1990, J. Vac. Sci. Technol. B, 8, 867. [2] Hasegawa, H., 1989, Proc. SPIE, 1144, 150. [3] Mui, D.S.L., Demirel, A.L., Strite, S., Wang, Z., Reed, J., Biswas, D. and Morkoç, C.H., 1993, J. Crystal Growth 127, 803–6. [4] Mui, D.S.L., Biswas, D., Reed, J., Demirel, A.L., Strite, S. and Morkoç, H., 1992, Appl. Phys. Lett. 60, 20. [5] Park, D-G., Chen, Z., Botchkarev, A.E., Noor, Mohammad S., and Morkoç, H., 1996, Phil. Mag. B, 74, 3. [6] Landheer, D., Rajesh, K., Masson, D., Hulse, J.E., Sproule, G.I. and Quance, T., 1998, J. Vac. Sci. Technol. A, 16, 5. [7] García, S., Mártil, I., González-Díaz, G. and Fernández, M., 1997, Semicond. Sci. Technol., 12, 1650. [8] Permiter, P.L. and Swanson, J.G., 1996, J. Electron. Mater., 25, 1506. [9] Redondo, E., Blanco, N., Mártil, I. and González-Díaz, G., 1999, Appl. Phys. Lett., 74, 991. [10] Redondo, E., Blanco, N., Mártil, I., González-Díaz, D., Peláez, R., Dueñas, S. and Castán, H., 1999, J. Vac. Sci. Technol. A, 17 at press. [11] García, S., Mártil, I., González-Díaz, G., Castán, E., Dueñas, S. and Fernández, M., 1998, J. Appl. Phys., 83, 332. [12] Nicollian, E.H. and Brews, J.R., 1982, Metal Oxide Semiconductor Physics and Technology (New York: Wiley). [13] Wang, Z., Mui, D.S.L., Demirel, A.L., Biswas, D., Reed, J. and Morkoç, H., 1992, Appl. Phys. Lett., 61, 1826. [14] Park, D-G., Wang, Z., Morkoç, H., Alterovitz, S.A., Smith, D.G. and Tsen, S-C.Y., 1998, J. Vac. Sci. Technol. B, 16, 3032. [15] Diatezua, D.M., Wang, Z., Park, D., Chen, Z., Rockett, A. and Morkoç, H., 1998, J. Vac. Sci. Technol. B, 16, 507. [16] Mui, D.S.L., Wang, Z. and Morkoç, H., 1993, Thin Solid Films, 231, 107–24. [17] Martínez, F., Mártil, I., González-Díaz, G., Selle, B. and Sieber, I., 1998, J. Non-Crystalline Solids, 523, 227–30. [18] Martínez, F.L., del Prado, Á., Bravo, D., López, F., Mártil, I. and González-Díaz, G., 1999, J. Vac. Sci. Technol. A, 17, at press.
Collections