Publication:
Cosmic vector for dark energy

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-09-08
Authors
Beltrán Jiménez, José
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this work we show that the presence of a vector field on cosmological scales could explain the present phase of accelerated expansion of the Universe. The proposed theory contains no dimensional parameters nor potential terms and does not require unnatural initial conditions in the early universe, thus avoiding the so-called cosmic coincidence problem. In addition, it fits the data from high-redshift supernovae with excellent precision, making definite predictions for cosmological parameters. Upcoming observations will be able to clearly discriminate this model from standard cosmology with cosmological constant.
Description
This work has been supported by DGICYT (Spain) Project No. FPA 2004-02602 and No. FPA 2005-02327, UCM-Santander PR34/07-15875, and by CAM/UCM 910309. J. B. acknowledges support from MEC Grant No. BES-2006-12059
Unesco subjects
Keywords
Citation
[1] S. Perlmutter et al., Astrophys. J. 517, 565 (1999). [2] A. G. Riess et al., Astron. J. 116, 1009 (1998); 117, 707 (1999). [3] D. N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175 (2003); 170, 377 (2007). [4] M. Tegmark et al., Phys. Rev. D 69, 103501 (2004). [5] C. Wetterich, Nucl. Phys. B302, 668 (1988); R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998). [6] C. Armendáriz-Picón, T. Damour, and V. Mukhanov, Phys. Lett. B 458, 209 (1999). [7] S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner, Phys. Rev. D 70, 043528 (2004). [8] G. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B 485, 208 (2000). [9] V.V. Kiselev, Classical Quantum Gravity 21, 3323 (2004). [10] C. Armendáriz-Picón, J. Cosmol. Astropart. Phys. 07 (2004) 007; C. G. Boehmer and T. Harko, Eur. Phys. J. C 50, 423 (2007); M. Novello et al., Phys. Rev. D 69, 127301 (2004); T. Koivisto and D. F. Mota, arXiv:0707.0279. [11] P. G. Ferreira et al., Phys. Rev. D 75, 044014 (2007). [12] C. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, England, 1993). [13] S. Nojiri, S. D. Odintsov, and S. Tsujikawa, Phys. Rev. D 71, 063004 (2005). [14] A. G. Riess et al., Astrophys. J. 607, 665 (2004). [15] P. Astier et al., Astron. Astrophys. 447, 31 (2006). [16] S. Nesseris and L. Perivolaropoulos, J. Cosmol. Astropart. Phys. 02 (2007) 025. [17] R. Trotta and R. Bower, Astron. Geophys. 47, 4.20 (2006). [18] M. Chevalier and D. Polarski, Int. J. Mod. Phys. D 10, 213 (2001); E.V. Linder, Phys. Rev. Lett. 90, 091301 (2003). [19] R. Lazkoz, S. Nesseris, and L. Perivolaropoulos, J. Cosmol. Astropart. Phys. 11 (2005) 010. [20] D. J. Eisenstein et al., Astrophys. J. 633, 560 (2005). [21] J. Dick, L. Knox, and M. Chu, J. Cosmol. Astropart. Phys. 07 (2006) 001. [22] E. Babichev, V. Mukhanov, and A. Vikman, J. High Energy Phys. 02 (2008) 101. [23] B. M. Gripaios, J. High Energy Phys. 10 (2004) 069.
Collections