Publication:
In-situ scanning electron microscopy and atomic force microscopy Young's modulus determination of indium oxide microrods for micromechanical resonator applications

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-04-21
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Electric field induced mechanical resonances of In2O3 microrods are studied by in-situ measurements in the chamber of a scanning electron microscope. Young's moduli of rods with different cross-sectional shapes are calculated from the resonance frequency, and a range of values between 131 and 152GPa are obtained. A quality factor of 1180-3780 is measured from the amplitude-frequency curves, revealing the suitability of In2O3 microrods as micromechanical resonators. The Young's modulus, E, of one of the rods is also measured from the elastic response in the force-displacement curve recorded in an atomic force microscope. E values obtained by in-situ scanning electron microscopy and by atomic force microscopy are found to differ in about 8%. The results provide data on Young's modulus of In2O3 and confirm the suitability of in-situ scanning electron microscopy mechanical resonance measurements to investigate the elastic behavior of semiconductor microrods.
Description
© 2014 AIP Publishing LLC. This work has been supported by MINECO (Project Nos. MAT 2012-31959 and CSD 2009-00013). J.B. acknowledges the financial support from Universidad Complutense de Madrid.
Unesco subjects
Keywords
Citation
1. A. Boisen, S. Dohn, S. S. Keller, S. Schmid, and M. Tenje, Rep. Prog. Phys. 74, 036101 (2011). 2. J.-W. Han, J.-H. Ahn, M.-W. Kim, J. O. Lee, J.-B. Yoon, and Y.-K. Choi, Small 6, 1197 (2010). 3. E. Gil-Santos, D. Ramos, J. Mart_ınez, M. Fern_andez-Reg_ulez, R. García, A. S. Paulo, M. Calleja, and J. Tamayo, Nat. Nanotechnol. 5, 641 (2010). 4. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, Phys. Rev. Lett. 95, 033901 (2005). 5. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, IEEE J. Sel. Top. Quantum Electron. 12, 96 (2006). 6. G. Anetsberger, R. Rivie`re, A. Schliesser, O. Arcizet, and T. J. Kippenberg, Nat. Photonics 2, 627 (2008). 7. K.-K. Ni, R. Norte, D. J. Wilson, J. D. Hood, D. E. Chang, O. Painter, and H. J. Kimble, Phys. Rev. Lett. 108, 214302 (2012). 8. C. R€ohling, M. Niebelsch€utz, K. Brueckner, K. Tonisch, O. Ambacher, and V. Cimalla, Phys. Status Solidi B 247, 2557 (2010). 9. X. D. Bai, P. X. Gao, Z. L. Wang, and E. G. Wang, Appl. Phys. Lett. 82, 4806 (2003). 10. C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, Phys. Rev. Lett. 96, 075505 (2006). 11. R. Agrawal, B. Peng, E. E. Gdoutos, and H. D. Espinosa, Nano Lett. 8, 3668 (2008). 12. M. Lucas, W. Mai, R. Yang, Z. L. Wang, and E. Riedo, Nano Lett. 7, 1314 (2007). 13. H. Ni and X. Li, Nanotechnology 17, 3591 (2006). 14. E. P. S. Tan, Y. Zhu, T. Yu, L. Dai, C. H. Sow, V. B. C. Tan, and C. T. Lim, Appl. Phys. Lett. 90, 163112 (2007). 15. Z. L. Wang, Z. R. Dai, R. Gao, and J. L. Gole, J. Electron Microsc. 51(Suppl.), S79 (2002). 16. H. Dong, Z. Chen, L. Sun, J. Lu, W. Xie, H. H. Tan, C. Jagadish, and X. Shen, Appl. Phys. Lett. 94, 173115 (2009). 17. J. Bartolom_e, A. Cremades, and J. Piqueras, J. Mater. Chem. C 1, 6790 (2013). 18. J. J. Roa, G. Oncins, F. T. Dias, V. N. Vieira, J. Schaf, and M. Segarra, Physica C 471, 544 (2011). 19. K. H. L. Zhang, A. Regoutz, R. G. Palgrave, D. J. Payne, R. G. Egdell, A. Walsh, S. P. Collins, D. Wermeille, and R. A. Cowley, Phys. Rev. B. 84, 233301 (2011). 20. See supplementary material at http://dx.doi.org/10.1063/1.4872461 for videos and a more detailed description of the deflection of the rods with the electric field. 21. S. Timoshenko, Vibration Problems in Engineering (D. Van Nostrand Company Inc., New York, 1937). 22. H. E. Schoeller, M.S. dissertation, Binghamton University, 2007. 23. A. Walsh, C. Richard, A. Catlow, A. A. Alexey, A. Sokol, and S. M. Woodley, Chem. Mater. 21, 4962 (2009). 24. D. Liu, W. W. Lei, B. Zou, S. D. Yu, J. Hao, K. Wang, B. B. Liu, Q. L. Cui, and G. T. Zou, J. Appl. Phys. 104, 083506 (2008). 25. F. Fuchs and F. Bechstedt, Phys. Rev. B. 77, 155107 (2008). 26. T. Wittkowski, J. Jorzick, H. Seitz, B. Schr€oder, K. Jung, and B. Hillebrands, Thin Solid Films 398–399, 465 (2001). 27.B .-K. Lee, Y.-H. Song, and J.-B. Yoon, in IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009 (IEEE, 2009), p. 148. 28. W. Ding, L. Calabri, X. Chen, K. M. Kohlhaas, and R. S. Ruoff, Compos. Sci. Technol. 66, 1112 (2006). 29. C.-H. Lin, H. Ni, X. Wang, M. Chang, Y. J. Chao, J. R. Deka, and X. Li, Small 6, 927 (2010). 30. K. Brueckner, F. Niebelschuetz, K. Tonisch, C. Foerster, V. Cimalla, R. Stephan, J. Pezoldt, T. Staunden, O. Ambacher, and M. A. Hein, Phys. Status Solidi A 208, 357 (2011). 31. J. Lee, Z. Wang, K. He, J. Shan, and P. X.-L. Feng, ACS Nano 7, 6086 (2013). 32. M. J. Burek, D. Ramos, P. Patel, I. W. Frank, and M. Loncˇar, Appl. Phys. Lett. 103, 131904 (2013). 33. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997).
Collections