Publication:
Excitonic Aharonov-Bohm effect in a two-dimensional quantum ring

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-12-01
Authors
González-Santander de la Cruz, Clara
Roemer, R. A.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study theoretically the optical properties of an exciton in a two-dimensional ring threaded by a magnetic flux. We model the quantum ring by a confining potential that can be continuously tuned from strictly one-dimensional to truly two-dimensional with finite radius-to-width ratio. We present an analytic solution of the problem when the electron-hole interaction is short ranged. The oscillatory dependence of the oscillator strength as a function of the magnetic flux is attributed to the Aharonov-Bohm effect. The amplitude of the oscillations changes upon increasing the width of the quantum ring. We find that the Aharonov-Bohm oscillations of the ground state of the exciton decrease with increasing the width, but, remarkably, the amplitude remains finite down to radius-to-width ratios less than unity. We attribute this resilience of the excitonic oscillations to the nonsimple connectedness of our chosen confinement potential with its centrifugal core at the origin.
Description
© 2011 American Physical Society. We thank Andrea Fischer for valuable discussions and a critical reading of the manuscript. CGS is grateful to the Centre for Scientific Computing for hospitality and to Ministerio de Educación, Comunidad de Madrid, and the European Social Fund for funding the research stays at Warwick during which much of this work was done. Work at Madrid was supported by MICINN (projects Mosaico and MAT2010-17180).
Unesco subjects
Keywords
Citation
1. A. Lorke, R. J. Luyken, M. Fricke, J. P. Kotthaus, G. Medeiros-Ribeiro, J. M. Garcia, and P. M. Petroff, Microelectron. Eng. 47, 95 (1999). 2. A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M. Garcia, and P. M. Petroff, Phys. Rev. Lett. 84, 2223 (2000). 3. R. J. Warburton, C. Schaflein, D. Haft, F. Bickel, A. Lorke, K. Karral, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, Nature (London) 405, 926 (2000). 4. E. Ribeiro, A. O. Govorov, W. Carvalho, and G. Medeiros-Ribeiro, Phys. Rev. Lett. 92, 126402 (2004). 5. M. D. Teodoro, V. L. Campo, V. Lopez-Richard, E. Marega, G. E. Marques, Y. G. A. Gobato, F. Iikawa, M. J. S. P. Brasil, Z. Y. AbuWaar, V. G. Dorogan, Y. I. Mazur, M. Benamara, and G. J. Salamo, Phys. Rev. Lett. 104, 086401 (2010). 6. M. Bayer, O. Stern, P. Hawrylak, S. Safard, and A. Forchel, Nature (London) 405, 923 (2000). 7. M. Bayer, M. Korkusinski, P. Hawrylak, T. Gutbrod, M. Michel, and A. Forchel, Phys. Rev. Lett. 90, 186801 (2003). 8. F. Ding, N. Akopian, B. Li, U. Perinetti, A. Govorov, F. M. Peeters, C. C. Bof Bufon, C. Deneke, Y. H. Chen, A. Rastelli, O. G. Schmidt, and V. Zwiller, Phys. Rev. B 82, 075309 (2010). 9. W. Ehrenberg and R. E. Siday, Proc. Phys. Soc. Section B 62, 8 (1949). 10. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959). 11. N. Byers and C. N. Yang, Phys. Rev. Lett. 7, 46 (1961). 12. T. Chakraborty and P. Pietilanen, ¨ Solid State Commun. 87, 809 (1993) 13. A. Chaplik, Pis’ma Zh. Eksp. Teor. Fiz. 62, 885 (1995) [JETP Lett. 62, 900 (1995)]. 14. R. A. Romer and M. E. Raikh, ¨ Phys. Rev. B 62, 7045 (2000). 15. I. Galbrath, F. Braid, and R. Warburton, Phys. Status Solidi A 190, 781 (2002). 16. D. Haft, C. Schulhauser, A. Govorov, R. Warburton, K. Karrai, J. Garcia, W. Schoenfeld, and P. Petroff, Physica E 13, 165 (2002). 17. A. Govorov, A. Kalameitsev, R. Warburton, K. Karrai, and S. Ulloa, Physica E 13, 297 (2002). 18. K. Maschke, T. Meier, P. Thomas, and S. Koch, Eur. Phys. J. B 19, 599 (2001). 19. T. V. Shahbazyan, I. E. Perakis, and M. E. Raikh, Phys. Rev. Lett. 84, 5896 (2000). 20. A. M. Fischer, V. L. Campo, M. E. Portnoi, and R. A. Römer, Phys. Rev. Lett. 102, 096405 (2009). 21. H. Hu, D.-J. Li, J.-L. Zhu, and J.-J. Xiong, J. Phys. Condens. Matter 12, 9145 (2001). 22. H. Hu, J. L. Zhu, D. J. Li, and J. J. Xiong, Phys. Rev. B 63, 195307 (2001). 23. A. O. Govorov, S. E. Ulloa, K. Karrai, and R. J. Warburton, Phys. Rev. B 66, 081309(R) (2002). 24. L. G. G. V. Dias da Silva, S. E. Ulloa, and A. O. Govorov, Phys. Rev. B 70, 155318 (2004). 25. Z. Barticevic, M. Pacheco, J. Simonin, and C. R. Proetto, Phys. Rev. B 73, 165311 (2006). 26. J. Song and S. E. Ulloa, Phys. Rev. B 63, 125302 (2001). 27. M. Grochol, F. Grosse, and R. Zimmermann, Phys. Rev. B 74, 115416 (2006). 28. Z. Dai and J.-L. Zhu, J. Phys. Condens. Matter 19, 346202 (2007). 29. F. Palmero, J. Dorignac, J. C. Eilbeck, and R. A. Romer, ¨ Phys. Rev. B 72, 075343 (2005). 30. T. V. Bandos, A. Cantarero, and A. Garcia-Cristobal, Eur. Phys. J. B 53, 99 (2006) 31. B. Li and F. M. Peeters, Phys. Rev. B 83, 115448 (2011). 32. E. N. Bogachek and I. O. Kulik, Fiz. Nizk. Temp. 9, 398 (1983) [Sov. J. Low Temp. Phys. 9, 202 (1983)]; E. N. Bogachek and Uzi Q. Landman, Phys. Rev. B 52, 14067 (1995); W.-C. Tan and J. C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996). 33. V. M. Kovalev and A. V. Chaplik, Pis’ma Zh. Eksp. Teor. Fiz. 90, 753 (2009) [JETP Lett. 90, 679 (2009)]. 34. The vector potential is defined as usual such that ƒ A • dr = øh/e. 35E. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963). 36. A. V. Maslov and D. S. Citrin, Phys. Rev. B 67, 121304 (2003). 37. T. Meier, P. Thomas, and S. Koch, Eur. Phys. J. B 22, 249 (2001). 38. P. Hui and Z. Jia-Lin, J. Phys. Condens. Matter 15, 7287 (2003).
Collections