Publication:
Fluctuation-induced pressures in fluids in thermal nonequilibrium steady states

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2014-02-28
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Correlations in fluids in nonequilibrium steady states are long range. Hence, finite-size effects have important consequences in the nonequilibrium thermodynamics of fluids. One consequence is that nonequilibrium temperature fluctuations induce nonequilibrium Casimir-like pressures proportional to the square of the temperature gradient. Hence, fluctuations cause a breakdown of the concept of local thermal equilibrium. Furthermore, transport coefficients become dependent on boundary conditions and on gravity. Thus nonequilibrium fluctuations affect some traditional concepts in nonequilibrium thermodynamics.
Description
© 2014 American Physical Society. The research was supported by the US National Science Foundation under Grant No. DMR-09-01907. We thank M. L. Huber, E. W. Lemmon, and R. A. Perkins of the US National Institute of Standards and Technology for providing us with relevant thermodynamic-property information for the evaluation of the NE pressures. In addition, J.O.Z. acknowledges support from the UCM/Santander Research Grant No. PR6/13-18867.
UCM subjects
Unesco subjects
Keywords
Citation
[1] M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999). [2] H. B. G. Casimir, Proc. Koninklijke Nederlandse Acad. Wetenschappen B 51, 793 (1948). [3] V. M. Mostepanenko and N. N. Trunov, The Casimir Effect and its Applications (Clarendon, Oxford, 1997). [4] I. E. Dzyalosshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv. Phys. 10, 165 (1961). [5] J. C. Munday and F. Capasso, Int. J. Mod. Phys. A 25, 2252 (2010). [6] A. Gambassi, C. Hertlein, L. Helden, C. Bechinger, and S. Dietrich, Europhys. News 40, 18 (2009). [7] M. E. Fisher and P. G. de Gennes, C. R. Acad. Sci. Paris B 287, 207 (1978). [8] M. Krech, The Casimir Effect in Critical Systems (World Scientific, Singapore, 1994). [9] M. Krech, J. Phys. Condens. Matter 11, R391 (1999). [10] M. Krech, Phys. Rev. E 56, 1642 (1997). [11] A. Gambassi, A. Maciolek, C. Hertlein, U. Nellen, L. Helden, C. Bechinger, and S. Dietrich, Phys. Rev. E 80, 061143 (2009). [12] S. Rafai, D. Bonn, and J. Meunier, Physica A 386, 31 (2007). [13] R. B. Jones, Physica A 105, 395 (1981). [14] D. Y. C. Chan and L. R. White, Physica A 122, 505 (1983). [15] J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Annu. Rev. Phys. Chem. 45, 213 (1994). [16] M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, Phys. Rev. A 4, 2055 (1971). [17] M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, J. Stat. Phys. 15, 7 (1976). [18] M. H. Ernst, E. H. Hauge, and J. M. J. van Leeuwen, J. Stat. Phys. 15, 23 (1976). [19] Y. Pomeau and P. Résibois, Phys. Rep. 19, 63 (1975). [20] T. R. Kirkpatrick, D. Belitz, and J. V. Sengers, J. Stat. Phys. 109, 373 (2002). [21] L. P. Kadanoff and J. Swift, Phys. Rev. 166, 89 (1968). [22] K. Kawasaki, Ann. Phys. (NY) 61, 1 (1970). [23] J. V. Sengers, Int. J. Thermophys. 6, 203 (1985). [24] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 995 (1982). [25] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 950 (1982). [26] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 972 (1982). [27] D. Ronis and I. Procaccia, Phys. Rev. A 26, 1812 (1982). [28] B. M. Law and J. V. Sengers, J. Stat. Phys. 57, 531 (1989). [29] J. M. Ortiz de Zárate and J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006). [30] P. N. Segr`e, R.W. Gammon, J. V. Sengers, and B. M. Law, Phys. Rev. A 45, 714 (1992). [31] W.B.Li, P. N. Segrè, R.W. Gammon, and J. V. Sengers, Physica A 204, 399 (1994). [32] J. M. Ortiz de Zárate, R. Pérez Cordón, and J.V. Sengers, Physica A 291, 113 (2001). [33] J. M. Ortiz de Zárate and L. Muñoz Redondo, Eur. Phys. J. B 21, 135 (2001). [34] T. R. Kirkpatrick, J. M. Ortiz de Zárate, and J. V. Sengers, Phys. Rev. Lett. 110, 235902 (2013). [35] M. E. Fisher, J. Math. Phys. 5, 944 (1964). [36] J. J. Brey, J. Chem. Phys. 79, 4585 (1983). [37] M. H. Ernst and J. R. Dorfman, J. Stat. Phys. 12, 311 (1975). [38] P. N. Segrè, R. Schmitz, and J. V. Sengers, Physica A 195, 31 (1993). [39] J. M. Ortiz de Zárate and J. V. Sengers, Physica A 300, 25 (2001). [40] J. M. Ortiz de Zárate and J. V. Sengers, Phys. Rev. E 66, 036305 (2002). [41] A. Vailati and M. Giglio, Phys. Rev. Lett. 77, 1484 (1996). [42] C. J. Takacs, A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, and D. S. Cannell, Phys. Rev. Lett. 106, 244502 (2011). [43] D. N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974). [44] R. Zwanzig, Annu. Rev. Phys. Chem. 16, 67 (1965). [45] A. Onuki, Phys. Rev. E 55, 403 (1997). [46] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press/Dover, Oxford, 1981). [47] E. W. Lemmon, M. L. Huber, and M. O. McLinden, Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP); Version 9.0 (Standards Reference Data, National Institute of Standards and Technology, Gaithersburg, MD, 2011). [48] D. M. Danchev, Phys. Rev. E 58, 1455 (1998). [49] R. A. Perkins (private communication). [50] R. T. Schermer, C. C. Olson, J. P. Coleman, and F. Bucholtz, Opt. Express 19, 10571 (2011). [51] A. Regazetti, M. Hoyos, and M. Martin, J. Phys. Chem. B 108, 15285 (2004). [52] A. Najafi and R. Golestanian, Europhys. Lett. 68, 776 (2004). [53] J. M. Ortiz de Zárate and J. V. Sengers, J. Stat. Phys. 115, 1341 (2004). [54] T. R. Kirkpatrick and E. G. D. Cohen, Phys. Lett. A 88, 44 (1982). [55] T. R. Kirkpatrick and E. G. D. Cohen, J. Stat. Phys. 33, 639 (1983). [56] K. Kawasaki and J. D. Gunton, Phys. Rev. A 8, 2048 (1973). [57] J. W. Dufty and J. A. McLennan, Phys. Rev. A 9, 1266 (1974). [58] C. K. Wong, J. A. McLennan, M. Lindenfeld, and J. W. Dufty, J. Chem. Phys. 68, 1563 (1978). [59] R. K. Standish, Phys. Rev. E 60, 5175 (1999). [60] I. M. de Schepper, H. van Beijeren, and M. H. Ernst, Physica 75, 1 (1974). [61] J. D. Foch, Ph.D. thesis, Rockefeller University, 1967. [62] J. A. McLennan, Phys. Rev. A 8, 1479 (1973). [63] A. Donev, T. G. Fai, and E. Vanden-Eijnden, arXiv:1312.1894 [J. Stat. Mech. (to be published)]. [64] M. H. Ernst, B. Cichocki, J. R. Dorfman, J. Sharma, and H. van Beijeren, J. Stat. Phys. 18, 237 (1978). [65] J.Kestin and J. R. Dorfman, A Course on Statistical Thermodynamics (Academic, New York, 1971). [66] J. C. Nieuwoudt, T.Kirkpatrick, and J. R.Dorfman, J. Stat. Phys. 34, 203 (1984). [67] D. Brogioli and A. Vailati, Phys. Rev. E 63, 012105 (2000). [68] A. Vailati and M. Giglio, Nature (London) 390, 262 (1997). [69] A. Vailati and M. Giglio, Phys. Rev. E 58, 4361 (1998). [70] W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, Phys. Rev. Lett. 81, 5580 (1998). [71] W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, J. Chem. Phys. 112, 9139 (2000). [72] D. Brogioli, A. Vailati, and M. Giglio, J. Phys.: Condens. Matter 12, A39 (2000). [73] A. Vailati, R. Cerbino, S. Mazzoni, C. J. Takacs, D. S. Cannell, and M. Giglio, Nat. Commun. 2, 290 (2011). [74] D. Bedeaux and P. Mazur, Physica 73, 431 (1974). [75] D. Bedeaux and P. Mazur, Physica 75, 79 (1974). [76] K. Kawasaki and J. D. Gunton, Phys. Rev. A 8, 2048 (1973). [77] H. Wada and S.-i. Sasa, Phys. Rev. E 67, 065302(R) (2003).
Collections