Publication:
Casimir effect between moving branes

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2003-03-10
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We consider a supersymmetric model with a single matter supermultiplet in a five-dimensional space-time with orbifold compactification along the fifth dimension. The boundary conditions on the two orbifold planes are chosen in such a way that supersymmetry remains unbroken on the boundaries. We calculate the vacuum energy-momentum tensor in a configuration in which the boundary branes are moving with constant velocity. The results show that the contribution from fermions cancels that of bosons only in the static limit, but in general a velocity-dependent Casimir energy arises between the branes. We relate this effect to the particle production due to the branes motion and finally we discuss some cosmological consequences.
Description
© 2003 Elsevier Science B.V. I am grateful to A. Linde for useful discussions and important suggestions and to C. Herdeiro, S. Hirano and L. Kofman for useful comments and discussions. This work has been partially supported by the CICYT (Spain) project FPA2000-0956. The author also acknowledges support from the Universidad Complutense del Amo Program.
Unesco subjects
Keywords
Citation
[1] H.B.G. Casimir, Proc. Kon. Nederl. Akad. Wetensch. 51 (1948) 793. [2] G. Bressi, G. Carugno, R. Onofrio, G. Ruoso, Phys. Rev. Lett. 88 (2002) 041804. [3] M. Bordag, U. Mohideen, V.M. Mostepanenko, Phys. Rep. 353 (2001) 1. [4] P. Hŏrava, E. Witten, Nucl. Phys. B 460 (1996) 506; P. Hŏrava, E. Witten, Nucl. Phys. B 475 (1996) 94. [5] M. Fabinger, P. Hoˇrava, Nucl. Phys. B 580 (2000) 243. [6] E.A. Mirabelli, M.E. Peskin, Phys. Rev. D 58 (1998) 065002. [7] S. Nojiri, S. Odintsov, S. Zerbini, Class. Quantum Grav. 17 (2000) 4855; I. Brevik, K. Milton, S. Nojiri, S. Odintsov, Nucl. Phys. B 599 (2001) 305. [8] J. Khoury, B.A. Ovrut, P.J. Steinhardt, N. Turok, Phys. Rev. D 64 (2001) 123522; P.J. Steinhardt, N. Turok, Phys. Rev. D 65 (2002) 126003. [9] S. Rasanen, Nucl. Phys. B 626 (2002) 183. [10] M. Bordag, G. Petrov, D. Robashik, Sov. J. Nucl. Phys. 39 (1984) 828; M. Bordag, F.M. Dittes, D. Robashik, Sov. J. Nucl. Phys. 43 (1986) 1034. [11] P. West, Introduction to Supersymmetry and Supergravity, World Scientific, 1986. [12] A. Pomarol, M. Quirós, Phys. Lett. B 438 (1998) 255. [13] Y. Igarashi, Phys. Rev. D 30 (1984) 1812; Y. Igarashi, T. Nonoyama, Prog. Theor. Phys. 77 (1987) 427. [14] R. Jáuregui, C. Villareal, S. Hacyan, Phys. Rev. A 52 (1995) 594; R. Jáuregui, C. Villareal, S. Hacyan, Mod. Phys. Lett. A 10 (1995) 619. [15] N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space, Cambridge Univ. Press, 1982. [16] G.N. Watson, A Treatise on the Theory of essel Functions, Cambridge Univ. Press, 1966. [17] S.W. Hawking, Commun. Math. Phys. 55 (1977) 133. [18] F.D. Mazzitelli, J.P. Paz, M.A. Castagnino, Phys. Lett. B 189 (1987) 132. [19] G.N. Felder, A. Frolov, L. Kofman, A. Linde, Phys. Rev. D 66 (2002) 023507. [20] G.T. Horowitz, J. Polchinski, hep-th/0206228. [21] A.J. Tolley, N. Turok, hep-th/0204091. [22] H. Liu, G. Moore, N. Seiberg, hep-th/0204168; H. Liu, G. Moore, N. Seiberg, hep-th/0206182; M. Fabinger, J. McGreevy, hep-th/0206196.
Collections