Publication:
Concentration fluctuations in non-isothermal reaction-diffusion systems. II. The nonlinear case

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2011-09-28
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this paper, we consider a simple reaction-diffusion system, namely, a binary fluid mixture with an association-dissociation reaction between two species. We study fluctuations at hydrodynamic spatiotemporal scales when this mixture is driven out of equilibrium by the presence of a temperature gradient, while still being far away from any chemical instability. This study extends the analysis in our first paper on the subject [J. M. Ortiz de Zarate, J. V. Sengers, D. Bedeaux, and S. Kjelstrup, J. Chem. Phys. 127, 034501 (2007)], where we considered fluctuations in a non-isothermal reaction-diffusion system but still close to equilibrium. The present extension is based on mesoscopic non-equilibrium thermodynamics that we recently developed [D. Bedeaux, I. Pagonabarraga, J. M. Ortiz de Zarate, J. V. Sengers, and S. Kjelstrup, Phys. Chem. Chem. Phys. 12, 12780 (2010)] to derive the law of mass action and fluctuation-dissipation theorems for the random contributions to the dissipative fluxes in the nonlinear macroscopic description. Just as for non-equilibrium fluctuations close to equilibrium, we again find an enhancement of the intensity of the concentration fluctuations in the presence of a temperature gradient. The non-equilibrium concentration fluctuations are in both cases spatially long ranged, with an intensity depending on the wave number q. The intensity exhibits a crossover from a proportional to q(-4) to a proportional to q(-2) behavior depending on whether the corresponding wavelength is smaller or larger than the penetration depth of the reacting mixture. This opens a possibility to distinguish between diffusion-or activation-controlled regimes of the reaction experimentally. The important conclusion overall is that non-equilibrium fluctuations in non-isothermal reaction-diffusion systems are always long ranged.
Description
© 2011 American Institute of Physics. J.V.S. and J.O.Z. acknowledge support from The Research Council of Norway, under Grant No. 167336/V30 "Transport on a nano-scale; at surfaces and contact lines." J.O.Z. acknowledges financial support from the Spanish Ministry of Science and Innovation (MICINN) through Grant No. FIS2008-03801. I. P. acknowledges financial support from MICINN through Grant No. FIS2008-04386, and from DURSI under Project No. SGR2009-634. I. P. and J.O.Z. further acknowledge joint support from MICINN under Grant No. FIS2008-04403-E.
UCM subjects
Unesco subjects
Keywords
Citation
1. Thermal Nonequilibrium Phenomena in Fluid Mixtures, edited by W. Köhler and S. Wiegand (Springer, Berlin, 2002). 2. G. F. Froment and K. B. Bischoff, Chemical Reactor Analysis and Design (Wiley, New York, 1990). 3. A. Stankiewicz and J. A. Moulijn, Re-engineering the Chemical Process Plant. Process Intensification (Marcel Dekker, New York, 2004). 4. J. Keizer, J. Math. Phys. 18, 1316 (1977). 5. M. Medina Noyola and J. Keizer, Physica A 107, 437 (1981). 6. J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes (Springer, Berlin, 1987), Sec. 6.9. 7. J. M. Ortiz de Zárate and J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006). 8. D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977). 9. D. T. Gillespie, Annu. Rev. Phys. Chem. 58, 35 (2007). 10. D. Bernstein, Phys. Rev. E 71, 041103 (2005). 11. H. Qian, S. Saffarian, and E. L. Elson, Proc. Natl. Acad. Sci. U.S.A. 99, 10376 (2002). 12. H. Qian, Nonlinearity 24, R19 (2011). 13. J. M. Ortiz de Zárate, J. V. Sengers, D. Bedeaux, and S. Kjelstrup, J. Chem. Phys. 127, 034501 (2007). 14. D. Bedeaux, I. Pagonabarraga, J. M. Ortiz de Zárate, J. V. Sengers, and S. Kjelstrup, Phys. Chem. Chem. Phys. 12, 12780 (2010). 15. H. Kramers, Physica 7, 284 (1940). 16. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962). 17. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics (Dover, London, 1985). 18. I. Pagonabarraga, A. Pérez-Madrid, and J. M. Rubí, Physica A 237, 205 (1997). 19. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1982). 20. C. W. Gardiner, Handbook of Stochastic Methods, 2nd ed. (Springer, Berlin, 1985). 21. J. Xu, S. Kjelstrup, and D. Bedeaux, Phys. Chem. Chem. Phys. 8, 2017 (2006). 22. J. Xu, S. Kjelstrup, D. Bedeaux, and J.-M. Simon, Phys. Chem. Chem. Phys. 9, 969 (2007). 23. J. M. Ortiz de Zárate, D. Bedeaux, I. Pagonabarraga, J. V. Sengers, and S. Kjelstrup, Comptes Rendus Mecanique 339, 287 (2011). 24. Y. Demirel, Nonequilibrium Thermodynamics. Transport and Rate Processes in Physical and Biological Systems (Elsevier, Amsterdam, 2002). 25. I. N. Levine, Physical Chemistry, 3rd ed. (McGraw-Hill, New York, 2001). 26. G. D. C. Kuiken, Thermodynamics of Irreversible Processes (Wiley, Chichester, 1994). 27. H. N. W. Lekkerkerker and W. G. Laidlaw, Phys. Rev. A 9, 346 (1974). 28. R. Pérez Cordón and M. G. Velarde, J. Physique (Paris) 36, 591 (1975). 29. A. M. S. Tremblay, M. Arai, and E. D. Siggia, Phys. Rev. A 23, 1451 (1981). 30. J. M. Ortiz de Zárate and J. V. Sengers, J. Stat. Phys. 115, 1341 (2004). 31. M. G. Velarde and R. S. Schechter, Phys. Fluids 15, 1707 (1972). 32. J. V. Sengers and J. M. Ortiz de Zárate, Thermal Nonequilibrium Phenomena in Fluid Mixtures, Lecture Notes in Physics Vol. 584, edited by W. Köhler and S. Wiegand (Springer, Berlin, 2002), pp. 121–145. 33. J. M. Ortiz de Zárate, J. A. Fornés, and J. V. Sengers, Phys. Rev. E 74, 046305 (2006). 34. P. N. Segrè, R. W. Gammon, and J. V. Sengers, Phys. Rev. E 47, 1026 (1993). 35. W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, Phys. Rev. Lett. 81, 5580 (1998). 36. A. P. Fröba, S. Will, and A. Leipertz, Int. J. Thermophys. 21, 603 (2000). 37. B. Hafskjold and S. K. Ratkje, J. Stat. Phys. 78, 463 (1995). 38. Y. Demirel, Chem. Eng. Sci. 61, 3379 (2006). 39. P. N. Segrè, R. W. Gammon, J. V. Sengers, and B. M. Law, Phys. Rev. A 45, 714 (1992). 40. B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976) (Dover, New York, 2000). 41. There is a misprint in Eq. (59) of Ortiz de Zárate et al. (Ref. 13). 42. G. Nicolis, A. Amellal, G. Dupont, and M. Mareschal, J. Mol. Liq. 41, 5 (1989). 43. Y. Yeh and R. N. Keeler, J. Chem. Phys. 51, 1120 (1969). 44. L. Letamendia, J. P. Yindoula, C. Vaucamps, and G. Nouchi, Phys. Rev. A 41, 3178 (1990). 45. D. Magde, E. Elson, and W. Webb, Phys. Rev. Lett. 29, 705 (1972). 46. O. Krichevsky and G. Bonnet, Rep. Prog. Phys. 65, 251 (2002). 47. W. B. Li, P. N. Segrè, R. W. Gammon, and J. V. Sengers, Physica A 204, 399 (1994
Collections