Publication:
Optimization of in situ plasma oxidation of metallic gadolinium thin films deposited by high pressure sputtering on silicon

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2013-01
Authors
Pampillón Arce, María Ángela
Feijoo Guerrero, Pedro Carlos
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
AVS Amer Inst. Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Gadolinium oxide thin films were deposited on silicon by a two-step process: high pressure sputtering from a metallic gadolinium target followed by an in situ plasma oxidation. Several plasma conditions for metal deposition and oxidation were studied in order to minimize the growth of a SiOx layer at the interface between the high permittivity dielectric and the silicon substrate and to avoid substrate damage. Plasma emission was studied with glow discharge optical spectroscopy. The films were structurally characterized by Fourier transform infrared spectroscopy. Metal-insulator-semiconductor capacitors were fabricated with two different top metals (titanium and platinum) to analyze the influence of deposition conditions and the metal choice. Pt gated devices showed an interfacial SiOx regrowth after a forming gas annealing, while Ti gates scavenge the interface layer.
Description
© American Vacuum Society. The authors would like to acknowledge C.A.I. de Técnicas Físicas and C.A.I. de Espectroscopía y Espectrometría of the Universidad Complutense de Madrid. This work was funded by the Spanish Ministerio de Economía y Competividad through the project TEC2010-18051. Works of M.A. Pampillón and P.C. Feijoo were funded by the FPI program and FPU Grant No. AP2007-01157, respectively.
Unesco subjects
Keywords
Citation
1) C. Auth et al., Intel Technol. J., 12, 77 (2008). 2) G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys., 89, 5243 (2001). 3) J. Robertson, Rep. Prog. Phys., 69, 327 (2006). 4) C. Zhao et al., Appl. Phys. Lett., 86, 132903 (2005). 5) J.M.J. Lopes et al., Microelectron. Eng., 86, 1646 (2009). 6) M. Wagner, T. Heeg, J. Schubert, St. Lenk, S. Mantl, C. Zhao, M. Caymax, and S. De Gendt, Appl. Phys. Lett., 88, 172901 (2006). 7) M. Roeckerath, J.M.J. Lopes, E. Durgun Özben, C. Sandow, S. Lenk, T. Heeg, J. Schubert, and S. Mantl, Appl. Phys. A: Mater. Sci. Process., 94, 521 (2009). 8) K. Fröhlich, J. Fedor, I. Kostic, J. Manka, and P. Ballo, J. Electr. Eng., 62, 54 (2011). 9) R.D. Shannon, J. Appl. Phys., 73, 348 (1993). 10) J.A. Kittl et al., Microelectron. Eng., 86, 1789 (2009). 11) S.-G. Lim et al., J. Appl. Phys., 91, 4500 (2002). 12) V. V. Afanasév, A. Stesmans, C. Zhao, M. Caymax, T. Heeg, J. Schubert, Y. Jia, D. G. Schlom, and G. Lucovsky, Appl. Phys. Lett., 85, 5917 (2004). 13) B.S. Lim, A. Rahtu, and R.G. Gordon, Nature Mater., 2, 749 (2003). 14) G. He, M. Liu, L.Q. Zhu, M. Chang, Q. Fang, and L.D. Zhang, Surf. Sci., 576, 67 (2005). 15) E. San Andrés, M. Toledano-Luque, Á. del Prado, M.A. Navacerrada, I. Mártil, G. González-Díaz, W. Bohne, J.R Öhrich, and E. Strub, J. Vac. Sci. Technol. A, 23, 1523 (2005). 16) Y. Hoshino, Y. Kido, K. Yamamoto, S. Hayashi, and M. Niwa, Appl. Phys. Lett., 81, 2650 (2002). 17) H. Kim, P.C. McIntyre, C.O. Chui, K.C. Saraswat, and S. Stemmer, J. Appl. Phys., 96, 3467 (2004). 18) W. Kern and D. Puotinen, RCA Rev., 31, 187 (1970). 19) E.H. Nicollian and A. Goetzberger, At&T Tech. J., 46, 1055 (1967). 20) J.R. Hauser, CVC version 5.0, © 2000 NCSU Software, Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 2000. 21) W.F. Meggers, C.H. Corliss, and B.F. Scribner, Natl. Bur. Stand. Monograph, 145, 600 (1975). 22) G. Norlèn, Phys. Scr., 8, 249 (1973). 23) M. Toledano-Luque et al., J. Appl. Phys., 102, 044106 (2007). 24) M. Toledano-Luque, M.L. Lucía, Á. del Prado, E. San Andrés, I. Mártil, and G. González-Díaz, Appl. Phys. Lett., 91, 191502 (2007). 25) M.A. Pampillón, P.C. Feijoo, E. San Andrés, M. Toledano-Luque, Á. del Prado, A.J. Blázquez, and M.L. Lucía, Microelectron. Eng., 88, 1357 (2011). 26) P.G. Pai, S.S. Chao, V. Takagi, and G. Lucovsky, J. Vac. Sci. Technol. A, 4, 689 (1986). 27) R.A.B. Devine, Appl. Phys. Lett., 68, 3108 (1996). 28) A.C. Diebold, D. Venables, Y. Chabal, D. Muller, M. Weldon, and E. Garfunkel, Mater. Sci. Semicond. Process., 2, 103 (1999). 29) E. Monroy et al., Semicond. Sci. Technol., 17, L47 (2002). 30) Y. Morita, S. Migita, W. Mizubayashi, and H. Ota, Jpn. J. Appl. Phys., Part 1, 50, 10PG01 (2011). 31) E. San Andrés, Á. del Prado, I. Mártil, G. González-Díaz, D. Bravo, and F.J. López, J. Appl. Phys., 92, 1906 (2002).
Collections