Publication:
Bias driven coherent carrier dynamics in a two-dimensional aperiodic potential

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-10-27
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study the dynamics of an electron wave-packet in a two-dimensional square lattice with an aperiodic site potential in the presence of an external uniform electric field. The aperiodicity is described by epsilon(m) = V cos(pi alpha m(x)(nu x)) cos(pi alpha m(y)(nu y)) at lattice sites (m(x),m(y)), with pi alpha being a rational number, and v(x) and v(y) tunable parameters. controlling the aperiodicity. Using an exact diagonalization procedure and a finite-size scaling analysis, we show that in the weakly aperiodic regime (nu(x), nu(y) < 1), a phase of extended states emerges in the center of the band at zero field giving support to a macroscopic conductivity in the thermodynamic limit. Turning on the field gives rise to Bloch oscillations of the electron wave-packet. The spectral density of these oscillations may display a double peak structure signaling the spatial anisotropy of the potential landscape. The frequency of the oscillations can be understood using a semi-classical approach.
Description
© 2008 Elsevier B.V. All rights reserved. Work at Alagoas was supported by CNPq-Rede Nanobioestruturas, CAPES (Brazilian research agencies) and FAPEAL (Alagoas State agency). Work at Madrid was supported by MEC (Project MOSAICO) and BSCH-UCM (Project PR34/07-15916).
Unesco subjects
Keywords
Citation
[1] G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, Rev. Mod. Phys. 71, 1591 (1999). [2] See contributions to Optics of Quantum Dots and Wires, eds. G. W. Briant and G. S. Solomon (Boston: Artech House, 2005). [3] T. Brandes, Phys. Rep. 408, 315 (2005). [4] J. R. Tischler, M. S. Bradly, Q. Zhang, T. Atay, A. Nurmiko, and V. Bulovíc, Org. Electronics 8, 94 (2007). [5] E. L. Albuquerque and M. G. Cottam, Phys. Rep. 376 225 (2003); Polaritons in Periodic and Quasiperiodic Structures (Elsevier: Amsterdam, 2004). [6] P. W. Anderson, Phys. Rev. 109, 1492 (1958). [7] N. F. Mott, J. Non-Cryst. Solids 1, 1 (1968). [8] N. Mott and W. D. Twose, Adv. Phys. 10, 107 (1961). [9] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979). [10] J. C. Flores, J. Phys.: Condens. Matter 1, 8471 (1989). [11] D. H. Dunlap, H.-L. Wu, and P. W. Phillips, Phys. Rev. Lett. 65, 88 (1990). [12] P. W. Phillips and H.-L. Wu, Science 252, 1805 (1991). [13] A. Sánchez and F. Domínguez-Adame, J. Phys A:Math. Gen. 27, 3725 (1994); A. Sánchez, E. Maciá, and F. Domínguez-Adame, Phys. Rev. B 49, 147 (1994). [14] E. Diez, A. Sánchez, F. Domínguez-Adame, Phys Rev. B 50, 14359 (1994); F. Domínguez-Adame, E.Diez, and A. Sánchez, Phys. Rev. B 51, 8115 (1995). [15] F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735 (1998); 84, 199 (2000); Physica A 266, 465 (1999). [16] F. M. Izrailev and A. A. Krokhin, Phys. Rev. Lett. 82, 4062 (1999). [17] V. Bellani, E. Diez, R. Hey, L. Toni, L. Tarricone, G. B. Parravicini, F. Domínguez-Adame, and R. Gómez-Alcalá, Phys. Rev. Lett. 82, 2159 (1999). [18] U. Kuhl, F. M. Izrailev, A. A. Krokhin, and H.-J. Stöckmann, Appl. Phys. Lett. 77, 633 (2000). [19] S. Das Sarma, S. He, and X. C. Xie, Phys. Rev. Lett. 61, 2144 (1988); Phys. Rev. B 41, 5544 (1990). [20] D. R. Grempel, S. Fishman, and R. E. Prange, Phys. Rev. Lett. 49, 833 (1982). [21] M. Griniasty and S. Fishman, Phys. Rev. Lett. 60, 1334 (1988). [22] D. J. Thouless, Phys. Rev. Lett. 61, 2141 (1988). [23] H. Yamada, Phys. Rev. B 69, 014205 (2004). [24] E. Maciá, Rep. Prog. Phys. 69, 397 (2006). [25] E. Maciá and F. Domínguez-Adame, Electrons, Phonons and Excitons in Low Dimensional Aperiodic Systems, Editorial Complutense, Madrid (2000). [26] F. A. B. F. de Moura, L. P. Viana, and A. C. Frery, Phys. Rev. B 73, 212302 (2006). [27] F. A. B. F. de Moura, Eur. Phys. J. B 58, 389 (2007). [28] F. Bloch, Z. Phys. 52, 555 (1927). [29] C. Zener, Proc. R. Soc. London, Ser. A 145, 523 (1934). [30] L. Esaki and R. Tsu, IBM J. Res. Div. 14, 61 (1970). [31] G. H. Wannier, Phys. Rev. 100, 1227 (1955); Phys. Rev. 101, 1835 (1956); Phys. Rev. 117, 432 (1960); Rev. Mod. Phys. 34, 645 (1962). [32] D. H. Dunlap and V. M. Kenkre, Phys. Rev. B 34, 3625 (1986). [33] K. Leo, P. Hairing, F. Brüggemann, R. Schwedler and K. Köhler, Solid State Commun. 84, 943 (1992). [34] K. Leo, Semicond. Sci. Technol. 13, 249 (1998). [35] V. Agarwal, J. A. delRio, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova and B. Gil, Phys. Rev. Lett. 92, 097401 (2004). [36] F. Domínguez-Adame, V. A. Malyshev, F. A. B. F. de Moura, and M. L. Lyra, Phys. Rev. Lett. 91, 197402 (2003). [37] F. A. B. F. de Moura, M. L. Lyra, F. Domínguez-Adame, and V. A. Malyshev, J. Phys.: Condens. Matter 19, 056204 (2007). [38] F. Domínguez-Adame, V. A. Malyshev, F. A. B. F. de Moura, and M. L. Lyra, Phys. Rev. B 71, 104303 (2005). [39] E. Díaz, F. Domínguez-Adame, Yu. A. Kosevich, and V. A. Malyshev, Phys. Rev. B 73, 174210 (2006). [40] H. N. Nazareno and P. E. de Brito, Phys. Rev. B 60, 4629 (1999). [41] B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56 1469, (1993). [42] M. Tit and M. Schreiber, J. Phys.: Condens. Mattter. 7, 5549 (1995). [43] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders Colege Publishers, New York, 1976), P. 213.
Collections