Publication:
Transverse-velocity fluctuations in a liquid under steady shear

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2008-02
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present an analysis of the transverse-velocity fluctuations in an isothermal liquid layer with a uniform shear rate between two parallel horizontal boundaries as a function of the wave number and the Reynolds number. The results were obtained by solving a stochastic version of the Orr-Sommerfeld equation subject to no-slip boundary conditions in a second-order Galerkin approximation. We find that the spatial Fourier transform of the transverse-velocity fluctuations exhibits a maximum as a function of the (horizontal) wave number q(parallel to). This maximum is associated with a crossover from a q(parallel to)(-4) dependence for larger q(parallel to) to a q(parallel to)(2) dependence for small q(parallel to). The q(parallel to)(-4) dependence at larger wave numbers is independent of the boundary conditions, but the small-q(parallel to) behavior is strongly affected by the boundary conditions. The nonequilibrium enhancement of the intensity of the transverse-velocity fluctuations remains finite for all values of the Reynolds number, but increases approximately with the square of the Reynolds number. The relation between our results and those obtained by previous authors in the absence of boundary conditions is elucidated.
Description
© 2008. The American Physical Society. We have greatly appreciated stimulating discussions with James W. Dufty, James F. Lutsko, and Bruno Eckhardt on the topic of this research. We are also indebted to the Spanish Ministerio de Educación y Ciencia for supporting J.V.S. during a sabbatical leave in Madrid, where this work was completed.
UCM subjects
Unesco subjects
Keywords
Citation
[1] J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Annu. Rev. Phys. Chem. 45, 213 (1994). [2] J. M. Ortiz de Zárate and J. V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006). [3] J. V. Sengers and J. M. Ortiz de Zárate, J. Non-Equilib. Thermodyn. 32, 319 (2007). [4] J. M. Ortiz de Zárate and J. V. Sengers, Physica A 300, 25 (2001). [5] J. M. Ortiz de Zárate and J. V. Sengers, Phys. Rev. E 66, 036305 (2002). [6] J. Machta, I. Oppenheim, and I. Procaccia, Phys. Rev. A 22, 2809 (1980). [7] A. M. S. Tremblay, M. Arai, and E. D. Siggia, Phys. Rev. A 23, 1451 (1981). [8] J. Machta and I. Oppenheim, Physica A 112, 361 (1982). [9] J. Lutsko and J. W. Dufty, Phys. Rev. A 32, 3040 (1985). [10] J.W. Dufty and J. Lutsko, in Recent Developments in Nonequilibrium Thermodynamics: Fluids and Related Topics, edited by J. Casas Vázquez, D. Jou, and J. M. Rubí, Lecture Notes in Physics Vol. 253 (Springer, Berlin, 1986), pp. 47–84. [11] J. F. Lutsko and J. W. Dufty, Phys. Rev. E 66, 041206 (2002). [12] H. Wada and S. I. Sasa, Phys. Rev. E 67, 065302 (R) (2003). [13] J. M. Ortiz de Zárate and J. V. Sengers, J. Stat. Phys. 115, 1341 (2004). [14] D. Ronis and I. Procaccia, Phys. Rev. A 26, 1812 (1982). [15] T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. A 26, 995 (1982). [16] P. G. Drazin and W. H. Reid, Hydrodynamic Stability, 2nd ed. (Cambridge University Press, Cambridge, U.K., 2004). [17] P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows (Springer, Berlin, 2001). [18] B. Eckhardt and R. Pandit, Eur. Phys. J. B 33, 373 (2003). [19] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959, 2nd revised English version 1987). [20] R. Schmitz and E. G. D. Cohen, J. Stat. Phys. 39, 285 (1985). [21] B. M. Law and J. V. Sengers, J. Stat. Phys. 57, 531 (1989). [22] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, London, 1986). [23] J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, New York, 1980/Dover, New York, 1991). [24] B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976/Dover, New York, 2000). [25] B. Bamieh and M. Dahleh, Phys. Fluids 13, 3258 (2001). [26] B. M. Law and J. C. Nieuwoudt, Phys. Rev. A 40, 3880 (1989). [27] T. R. Kirkpatrick, D. Belitz, and J. V. Sengers, J. Stat. Phys. 109, 373 _2002_. [28] J. M. Ortiz de Zárate, R. Pérez Cordón, and J. V. Sengers, Physica A 291, 113 (2001). [29] J. M. Ortiz de Zárate, J. A. Fornés, and J. V. Sengers, Phys. Rev. E 74, 046305 (2006). [30] R. Schmitz and E. G. D. Cohen, J. Stat. Phys. 40, 431 (1985). [31] A. V. Dyachenko and A. A. Shkalikov, Funct. Anal. Appl. 36, 228 _2002_. [32] J. M. Ortiz de Zárate and L. Muñoz Redondo, Eur. Phys. J. B 21, 135 (2001). [33] L. N. Trefethen, A. Trefethen, S. C. Reddy, and T. A. Driscoll, Science 261, 578 (1993). [34] J. V. Sengers and J. M. Ortiz de Zárate, Rev. Mex. Fis. 48, Suppl. 1, 14 (2002). [35] A. Vailati and M. Giglio, Phys. Rev. Lett. 77, 1484 (1996). [36] B. F. Farrell and P. J. Ioannou, Phys. Fluids A 5, 2600 (1993). [37] D. Biau and A. Bottaro, Phys. Fluids 16, 3515 (2004). [38] H. Wada, Phys. Rev. E 69, 031202 (2004). [39] J. M. Ortiz de Zárate and J. V. Sengers, Phys. Rev. E 73, 013201 (2006).
Collections