Publication:
Capacitance of Josephson junctions made on bicrystalline substrates of different geometries

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2005-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The electromagnetic parameters of YBa2Cu3O7-x (YBCO) grain boundary Josephson junctions (JJs) fabricated on four different tilt bicrystal geometries: 12degrees [001] asymmetric, 24degrees [001] symmetric, 24degrees [001] asymmetric, and 45degrees [100] asymmetric, have been studied. While the Swihart velocity ((c) over bar) is slightly affected by the nature of the barrier and mainly fixed by the junction width, a notable influence of the barrier structure, of the geometry of the bicrystal substrate, on the relative dielectric constant to the barrier thickness ratio (epsilon/t) values has been found. Interesting barrier information can be deduced from the study of the dependence of the junction capacitance on the junction resistance. We have observed that the capacitance values deduced by means of Fiske steps in YBCO 24degrees [001] symmetric and 45degrees [100] asymmetric JJs scales with junction resistance in the opposite direction. This result could reveal the presence of a tunnel barrier in the YBCO 45degrees [100] asymmetric JJs. On the other hand, different capacitance values have been obtained by means of Fiske steps and hysteresis observed in the current-voltage characteristics in 45degrees [100] asymmetric JJs. An interpretation of this result can be made taking into account the contribution of the depleted YBCO layers close to the crystallographic grain boundary.
Description
© The American Physical Society. The authors would like to thank C.A.I de Implantación Iónica from the Universidad Complutense in Madrid for assistance with lithography facilities. Financial support from CICYT Grant No. BMF2001-1419 is acknowledged. This work has been partially supported by the ESF Network “Pishift,” the project DG236RIC “NDA,” the TRN “De-QUACS,” and the regional project L.R. N.5 “Proprietà di trasporto e di interfaccia in giunzioni Josephson HTcsu scala submicrometrica.”
Keywords
Citation
1) R. Gross, P. Chaudhari, D. Dimos, A. Gupta, and K. Koren, Phys. Rev. Lett., 64, 228 (1990). 2) D. Dimos, P. Chaudhari, and J. Mannhart, Phys. Rev. B, 41, 4038 (1990). 3) M. Kawasaki, P. Chaudhari, and A. Gupta, Phys. Rev. Lett., 68, 1065 (1992). 4) J. A. Alarco and E. Olsson, Phys. Rev. B, 52, 13 625 (1995). 5) H. Hilgenkamp, J. Mannhart, and B. Mayer, Phys. Rev. B, 53, 14 586 (1996). 6) B. Holzapfel, D. Verebelyi, C. Cantón, M. Paranthaman, B. Sales, R. Feenstra, D. Christen, and D. P. Norton, Physica C, 341-348, 1431 (2000). 7) E. Il’ichev, V. Zakosarenko, R. P. J. Ijsselsteijn, H. E. Hoenig, H. G. Meyer, A. Golubov, M. H. S. Anim, A. M. Zagoskin, A. N. Omelyanchouk, and M. Y. Kupriyanov, Phys. Rev. Lett., 86, 5369 (2001). 8) U. Poppe, Y. Y. Divin, M. I. Faley, J. S. Wu, C. L. Jia, P. M. Shadrin, and K. Urban, IEEE Trans. Appl. Supercond., 11, 3768 (2001) --- Y. Y. Divin, U. Poppe, C. L. Jia, P. M. Shadrin, and K. Urban, Physica C, 372-376, 115 (2002). 9) E. Sarnelli, D. Crimaldi, A. Monaco, G. Testa, and M. A. Navacerrada (unpublished). 10) F. Lombardi, F. Tafuri, F. Ricci, F. Mileto Granozio, A. Barone, G. Testa, E. Sarnelli, J. R. Kirtley, and C. C. Tsuei, Phys. Rev. Lett., 89, 207001 (2002). 11) F. Tafuri, F. Carillo, F. Lombardi, F. Mileto Granozio, F. Ricci, U. Scotti di Uccio, A. Barone, G. Testa, E. Sarnelli, and J. R. Kirtley, Phys. Rev. B, 62, 14 431 (2000). 12) G. Testa, E. Sarnelli, F. Carrillo, and F. Tafuri, Appl. Phys. Lett., 75, 3542 (1999). 13) N. D. Browning, J. P. Buban, P. D. Nellist, D. P. Norton, M. F. Chisholm, and S. J. Pennycook, Physica C, 294, 183 (1998). 14) A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley, New York, 1982). 15) M. D. Fiske, Rev. Mod. Phys., 36, 221 (1964). 16) Y. M. Zhang, D. Winkler, P. A. Nilsson, and T. Claeson, Phys. Rev. B, 51, 8684 (1995). 17) M. A. Navacerrada, M. L. Lucía, and F. Sánchez-Quesada, Phys. Rev. B, 61, 6422 (2000). 18) M. A. Navacerrada, M. L. Lucía, and F. Sánchez-Quesada, Europhys. Lett., 54, 387 (2001). 19) M. Varela, Z. Sefrioui, D. Arias, M. A. Navacerrada, M. L. Lucía, M. A. López de la Torre, C. León, G. Loos, F. Sánchez-Quesada, and J. Santamaría, Phys. Rev. Lett., 83, 3936 (1999). 20) H. Zappe, J. Appl. Phys., 44, 1371 (1972). 21) M. A. Navacerrada, M. L. Lucía, and F. Sánchez-Quesada, Supercond. Sci. Technol., 14, 72 (2001). 22) B. H. Moeckly and R. A. Buhrman, IEEE Trans. Appl. Supercond., 5, 3414 (1995). 23) P. F. McBrien, R. H. Hadfield, W. E. Booij, A. Moya, F. Kahlmann, M. G. Blamire, C. M. Pregum, and E. J. Tarte, Physica C, 339, 88 (2000), and references therein. 24) H. Moeckly, D. K. Lathrop, and R. A. Buhrman, Phys. Rev. B, 47, 400 (1993) --- E. Sarnelli, P. Chaudhari, and J. Lacey, Appl. Phys. Lett., 62, 777 (1993). 25) E. Sarnelli and G. Testa, Physica C, 372-376, 124 (2002). 26) H. Frohlich, Theory of Dielectrics (Oxford University Press, New York, 1968). 27) E. J. Tarte, G. A. Wagner, R. E. Somekh, F. J. Baundenbacher, P. Berghuis, and J. E. Evetts, IEEE Trans. Appl. Supercond., 7, 3662 (1997). 28) H. Hilgenkamp and J. Mannhart, Appl. Phys. Lett., 73, 265 (1998). 29) H. Hilgenkamp and J. Mannhart, IEEE Trans. Appl. Supercond., 9, 3405 (1999). 30) N. D. Browning, J. P. Buban, P. D. Nellist, D. P. Norton, M. F. Chisholm, and S. J. Pennycook, Physica C, 294, 183 (1998).
Collections