Publication:
Dicke effect in a quantum wire with side-coupled quantum dots

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2006-08
Authors
Orellana, P. A.
Díez, E.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A system of an array of side-coupled quantum dots attached to a quantum wire is studied theoretically. Transport through the quantum wire is investigated by means of a noninteracting Anderson tunneling Hamiltonian. Analytical expressions of the transmission probability and phase are given. The transmission probability shows an energy spectrum with forbidden and allowed bands that depends on the up-down asymmetry of the system. in up-down symmetry only the gap survives, and in up-down asymmetry an allowed band is formed. We show that the allowed band arises by the indirect coupling between the up and down quantum dots. In addition, the band edges can be controlled by the degree of asymmetry of the quantum dots. We discuss the analogy between this phenomenon with the Dicke effect in optics.
Description
© 2006 Elsevier B.V. All rights reserved. P. A. O. would like to thank financial support from Millennium Science Nucleus Condensed Matter Physics and FONDECYT under grants Nos. 1020269 and 7020269. Work in Madrid was supported by MCyT (MAT2003-01533). E. Diez acknowledge support by Junta de Castilla y León (SA007B05) and MEC (Ramón y Cajal and FIS2005-01375). Addition ally, P. A. O. would like to thank the hospitality of Departamento de Física de Materiales (UCM) and Departamento de F´ısica Fundamental (USAL) during his visits.
Unesco subjects
Keywords
Citation
[1] A. W. Holleitner, C. R. Decker, H. Qin, K. Eberl, and R. H. Blick, Phys. Rev. Lett. 87, 256802 (2001). [2] A. W. Holleitner, R. H. Blick, A. K. Huttel, K. Eber, and J. P. Kotthaus, Science 297, 70 (2002). [3] W. Z. Shangguan, T. C. Au Yeung, Y. B. Yu, and C. H. Kam, Phys. Rev. B 63, 235323 (2001). [4] A. I. Yanson, G. Rubio-Bollinger, H. E. van den Brom, N. Agraít, and J.M. van Ruitenbeek, Nature (London) 395, 780 (1998). [5] A. T. Tilke, F. C. Simmel, H. Lorenz, R. H. Blick, and J. P. Kotthaus, Phys. Rev. B. 68 075311 (2003). [6] R. H. M. Smit, C. Untiedt, G. Rubio-Bollinger, R. C. Segers, and J. M. van Ruitenbeek, Phys. Rev. Lett. 91, 076805 (2003). [7] A. Oguri, Phys. Rev. B 63 115305 (2001). [8] Z. Y. Zeng and F. Claro, Phys. Rev. B 65, 193405 (2002). [9] T-S. Kim and S. Hershfield, Phys. Rev. B 65, 214526 (2002). [10] P. A. Orellana, F. Domínguez-Adame, I. Gómez, and M. L. Ladrón de Guevara, Phys. Rev. B 67, 085321 (2003). [11] P. A. Orellana and F. Dom´ınguez-Adame, phys. stat. sol. (a) 203, 1178 (2006). [12] P. A. Orellana, M. L. Ladr´on de Guevara, M. Pacheco, and A. Latgé, Phys. Rev. B Phys. Rev. B 68, 195321 (2003) , P. A. Orellana and M. Pacheco Phys. Rev. B 71, 235330 (2005). [13] A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman Phys. Rev. Lett. 74, 4047 (1995). [14] R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, Hadas Shtrikman, Nature 385 417 (1997). [15] M. Sato, H. Aikawa, K. Kobayashi, S. Katsumoto, and Y. Iye, Phys. Rev. Lett. 95, 066801 (2005). [16] R. H. Dicke, Phys. Rev. 89, 472 (1953). [17] P. A. Orellana, M. L. Ladr´on de Guevara, and F. Claro, Phys. Rev. B 70, 233315 (2005). [18] T. Brandes, Phys. 408, 315 (2005). [19] S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, cam bridge, 1997).
Collections