Publication:
Light scattering from nonequilibrium concentration fluctuations in a polymer solution

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2000-05-22
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We have performed light-scattering measurements in dilute and semidilute polymer solutions of polystyrene in toluene when subjected to stationary temperature gradients. Five solutions with concentrations below and one solution with a concentration above the overlap concentration were investigated. The experiments confirm the presence of long-range nonequilibrium concentration fluctuations which are proportional to (del T)(2)/k(4), where del T is the applied temperature gradient and k is the wave number of the fluctuations. In addition, we demonstrate that the strength of the nonequilibrium concentration fluctuations, observed in the dilute and semidilute solution regime, agrees with theoretical values calculated from fluctuating hydrodynamics. Further theoretical and experimental work will be needed to understand nonequilibrium fluctuations in polymer solutions at higher concentrations.
Description
© 2000 American Institute of Physics. We are indebted to J. F. Douglas for valuable discussions and to S. C. Greer for helpful advice concerning the characterization of the polymer sample. J.V.S. acknowledges the hospitality of the Institute for Theoretical Physics of the Utrecht University, where part of the manuscript was prepared. The research at the University of Maryland is supported by the U.S. National Science Foundation under Grant CHE 9805260. J.M.O.Z. was funded by the Spanish Department of Education during his postdoctoral stage at Maryland, when part of the work was done.
UCM subjects
Unesco subjects
Keywords
Citation
1 J. Berne and S. Pecora, Dynamic Light Scattering (McGraw-Hill, New York, 1980). 2 J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, New York, 1980). 3 J. R. Dorfman, T. R. Kirkpatrick, and J. V. Sengers, Annu. Rev. Phys. Chem. 45, 213 (1994). 4 T. R. Kirkpatrick, E. G. D. Cohen, and J. R. Dorfman, Phys. Rev. Lett. 42, 862 (1979); 44, 472 (1980); Phys. Rev. A 26, 950 (1982); 26, 972 (1982); 26, 995 (1982). 5 D. Ronis and I. Procaccia, Phys. Rev. A 26, 1812 (1982). 6 B. M. Law and J. V. Sengers, J. Stat. Phys. 57, 531 (1989). 7 R. Schmitz and E. G. D. Cohen, J. Stat. Phys. 39, 285 ~1985!; 40, 431 (1985). 8 G. Grinstein, D.-H. Lee, and S. Sachdev, Phys. Rev. Lett. 64, 1927 (1990). 9 P. N. Segrè, R. W. Gammon, J. V. Sengers, and B. M. Law, Phys. Rev. A 45, 714 (1992). 10 W. B. Li, P. N. Segrè, R. W. Gammon, and J. V. Sengers, Physica A 204, 399 (1994). 11 J. C. Nieuwoudt and B. M. Law, Phys. Rev. A 42, 2003 (1990). 12 B. M. Law and J. C. Nieuwoudt, Phys. Rev. A 40, 3880 (1989). 13 P. N. Segrè, R. Schmitz, and J. V. Sengers, Physica A 195, 31 (1993). 14 P. N. Segrè and J. V. Sengers, Physica A 198, 96 (1993). 15 A. Vailati and M. Giglio, Phys. Rev. E 58, 4361 (1998). 16 P. C. Hohenberg and J. B. Swift, Phys. Rev. A 46, 4773 (1992). 17 H. van Beijeren and E. G. D. Cohen, J. Stat. Phys. 53, 77 (1988). 18 I. Pagonabarraga, J. M. Rubí, and L. Torner, Physica A 173, 111 (1991). 19 P. N. Segrè, R. W. Gammon, and J. V. Sengers, Phys. Rev. E 47, 1026 (1993). 20 W. B. Li, P. N. Segrè, and R. W. Gammon, J. Phys.: Condens. Matter 6, A119 (1994). 21 A. Vailati and M. Giglio, Phys. Rev. Lett. 77, 1484 (1996); Prog. Colloid Polym. Sci. 104, 76 (1997). 22 W. Köhler and B. Müller, J. Chem. Phys. 103, 4367 (1995). 23 K. J. Zhang, M. E. Briggs, R. W. Gammon, and J. V. Sengers, J. Chem. Phys. 104, 6881 (1996). 24 K. J. Zhang, M. E. Briggs, J. V. Sengers, R. W. Gammon, and J. F. Douglas, J. Chem. Phys. 111, 2270 (1999). 25 W. B. Li, K. J. Zhang, J. V. Sengers, R. W. Gammon, and J. M. Ortiz de Zárate, Phys. Rev. Lett. 81, 5580 (1998). 26 M. A. Anisimov, V. A. Agayan, A. A. Povodyrev, J. V. Sengers, and E. E. Gorodetskii, Phys. Rev. E 57, 1946 (1998). 27 R. Schmitz, Physica A 206, 25 (1995). 28 I. Noda, Y. Higo, N. Ueno, and T. Fujimoto, Macromolecules 17, 1055 (1984). 29 Y. Higo, N. Ueno, and I. Noda, Polym. J. (Tokyo) 15, 367 (1983). 30 B. M. Law, P. N. Segrè, R. W. Gammon, and J. V. Sengers, Phys. Rev. A 41, 816 (1990). 31 Th. G. Scholte, J. Polym. Sci., Part A-2: Polym. Phys. 8, 841 (1970). 32 P. N. Pusey, J. M. Vaughan, and G. Williams, J. Chem. Soc., Faraday Trans. 70, 1696 (1970). 33 B. Appelt and G. Meyerhoff, Macromolecules 13, 657 (1980). 34 V. Petrus, B. Porsch, B. Nyström, and L.-O. Sundelöf, Makromol. Chem. 183, 1279 (1982). 35 E. Ozdemir and R. W. Richards, Polymer 24, 1097 (1983). 36 M. Ramanathan and M. E. McDonnell, Macromolecules 17, 2093 (1984). 37 B. K. Varma, Y. Fujita, M. Takakashi, and T. Nose, J. Polym. Sci. 22, 1781 (1984). 38 K. Huber, S. Bantle, P. Lutz, and W. Burchard, Macromolecules 18, 1461 (1985). 39 B. D. Freeman, D. S. Soane, and M. M. Denn, Macromolecules 23, 245 (1990). 40 W. Köhler, C. Rosenauer, and P. Rossmanith, Int. J. Thermophys. 16, 11 (1995). 41 P. Vidakovic and F. Rondelez, Macromolecules 18, 700 (1985). 42 H. Yamakawa, Modern Theory of Polymer Solutions (Harper & Row, New York, 1971). 43 Y. Takakashi, Y. Isono, I. Noda, and M. Nagasawa, Macromolecules 18, 1002 (1985). 44 L. A. Papazian, Polymer 10, 399 (1969). 45 F. Brochard and P. G. de Gennes, C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers 293, 1025 (1981). 46 B. Nyström and J. Roots, Polymer 33, 1548 (1992). 47 X. L. Wu, D. J. Pine, and P. K. Dixon, Phys. Rev. Lett. 66, 2408 (1991). 48 S. T. Milner, Phys. Rev. Lett. 66, 1477 (1991). 49 A. Onuki, Phys. Rev. Lett. 62, 2472 (1989). 50 A. Vailati and M. Giglio, Nature (London) 390, 262 (1997).
Collections