Publication:
Continuous and Localized Mn Implantation of ZnO

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2009-08
Authors
Hernández Vélez, M.
Jensen, J.
Martínez, O.
Sanz, R.
Vázquez, M.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We present results derived from continuous and localized 35 keV (55)Mn(+) ion implantations into ZnO. Localized implantations were carried out by using self-ordered alumina membranes as masks leading to ordered arrays of implanted volumes on the substrate surfaces. Defects and vacancies in the small implantation volumes of ZnO were generated due to the implantation processes besides the creation of new phases. Rapid thermal annealing was applied in the case of continuous implantation. The samples were characterized by HRSEM, GIXRD, Raman spectroscopy and RBS/C. Magnetic characterization of the samples pointed out appreciable differences among the samples obtained by the different implantation methods. This fact was mainly attributed to the different volume/surface ratios present in the implanted zones as well as to the increase of Mn atom concentrations along the grain frontiers in the nanostructured surfaces. The samples also showed a ferromagnetic transition phase at temperature value higher than room temperature.
Description
© Springer. We are grateful to P. Fernández and J.L. Baldonedo, Universidad Complutense, for help with the ion implantations and SEM pictures. This work was supported in part by the Spanish Ministry of Education under Grant MAT2007-6042. J. Jensen thanks the Carl Tryggers Foundation (Sweden) for financial support.
Unesco subjects
Keywords
Citation
1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science, 287, 1019 (2000). doi:10.1126/science.287.5455.1019. 2. K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys., 40(Part 2), L334 (2001). doi:10.1143/JJAP.40.L334. 3. C. Jagadish, S. Pearton (eds.), Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications (Elsvier, Amsterdam, 2006). 4. J.B. Wang, G.J. Huang, X.L. Zhong, L.Z. Sun, Y.C. Zhou, E.H. Liu, Appl. Phys. Lett. 88, 252502 (2006), doi:10.1063/1.2208564 5. N.S. Norberg, K.R. Kittilstved, J.E. Amonette, R.K. Kukkadapu, D.A. Schwartz, D.R. Gamelin, J. Am. Chem. Soc., 126, 9387 (2004), doi:10.1021/ja048427j. 6. W.B. Mia, H.L. Bai, H. Liu, C.Q. Sun, J. Appl. Phys., 101, 023904 (2007). 7. V.K. Sharma, G.D. Varmaa, J. Appl. Phys., 102, 056105 (2007), doi:10.1063/1.2778283. 8. C. Darshan, C. Kundaliya, S.B. Ogale, S.E. Lofland, S. Dhar, C.J. Metting, S.R. Shinde, Z. Ma, B. Varughese, K.V. Ramanujachary, L. Salamanca-Riba, T. Venkatesan, Nat. Mater., 3, 709 (2005). 9. M.A. García, M.L. Ruiz-González, A. Quesada, J.L. Costa-Krámer, J.F. Fernández, S.J. Khatib, A. Wennberg, A.C. Caballero, M.S. Martín-González, M. Villegas, F. Briones, J.M. González-Calbet, A. Hernando, Phys. Rev. Lett., 94, 217206 (2005), doi:10.1103/PhysRevLett.94.217206. 10. E. Céspedes, J. García-López, M. García-Hernández, A. de Andrés, C. Prieto, J. Appl. Phys., 102, 033907 (2007), doi:10.1063/1.2764207. 11. K. Sun, S. Zhu, R. Fromknecht, G. Linker, L.M. Wang, Mater. Lett., 58, 547 (2004), doi:10.1016/S0167-577X(03)00559-7. 12. E. Sonder, R.A. Zuhr, R.E. Valiga, J. Appl. Phys., 64, 1140 (1988), doi:10.1063/1.341875. 13. J.B. Yi, H. Pan, J.Y. Lin, J. Ding, Y.P. Feng, S. Thongmee, T. Liu, H. Gong, L. Wang, Adv. Mater., 20, 1170 (2008). 14. M. Nakamura, S. Nigo, N. Kishimoto, Trans. Mater. Res. Soc. Jpn., 33, 1101 (2008). 15. www.srim.org. Accessed 30 Apr 2009. 16. R. Sanz, A. Johansson, M. Skupinski, J. Jensen, G. Possnert, M. Boman, M. Vázquez, K. Hjort, Nano Lett., 6, 1065 (2006), doi:10.1021/nl0602185. 17. M. Hernández-Vélez, Thin Solid Films, 495, 51 (2006), doi:10.1016/j.tsf.2005.08.331. 18. R. Sanz, J. Jensen, A. Johansson, M. Skupinski, G. Possnert, M. Boman, M. Hernández-Vélez, M. Vázquez, K. Hjort, Nanotechnology, 18, 305303 (2007), doi:10.1088/0957-4484/18/30/305303. 19. S.W. Shin, S.G. Lee, J. Lee, C.N. Whang, J.-H. Lee, I.-H. Choi, T.G. Kim, J.H. Song, Nanotechnology, 16, 1396 (2005), doi:10.1088/0957-4484/16/8/070. 20. J.M. Calleja, M. Cardona, Phys. Rev. B, 16, 3753 (1997), doi:10.1103/PhysRevB.16.3753. 21. R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M.J. Callahan, Phys. Rev. B, 75, 165202 (2007), doi:10.1103/PhysRevB.75.165202. 22. L. Artús, R. Cuscó, E. Alarcón-Lladó, G. González-Díaz, I. Mártil, J. Jiménez, B. Wang, M.J. Callahan, Appl. Phys. Lett., 90, 181911 (2007), doi:10.1063/1.2734474. 23. Z.Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X.L. Yuan, T. Sekiguchi, R. Suzuki, T. Ohdaira, J. Appl. Phys., 97, 013528 (2005), doi:10.1063/1.1821636. 24. J. Yu, H. Xing, Q. Zhao, H. Mao, Y. Shen, J. Wang, Z. Lai, Z. Zhu, Solid State Commun., 138, 502 (2006), doi:10.1016/j.ssc.2006.04.019.
Collections